View source: R/HiTIMED_deconvolution.R
HiTIMED_deconvolution | R Documentation |
The function estimates proportions up to 17 cell types in tumor microenvironment for 20 types of carcinomas.
HiTIMED_deconvolution(tumor_beta, tumor_type, h = 6, tissue_type = "tumor")
tumor_beta |
Methylation beta matrix or data frame from the bulk tumor samples. |
tumor_type |
Specify tumor type for microenvironment deconvolution. BLCA: Bladder urothelial carcinoma, BRCA: Breast invasive carcinoma, CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL: Cholangiocarcinoma, COAD: Colon adenocarcinoma, ESCA: Esophageal carcinoma, HNSC: Head and neck squamous cell carcinoma, KIRC: Kidney clear cell renal cell carcinoma, LIHC: Liver hepatocellular carcinoma, LUAD: Lung adenocarcinoma, LUSC: Lung squamous cell carcinoma, OV: Ovarian addenocarcinoma, PAAD: Pancreatic adenocarcinoma, PRAD: Prostate adenocarcinoma, READ: Rectum adenocarcinoma, STAD: Stomach adenocarcinoma, THCA: Thyroid carcinoma, UCEC: Uterine corpus endometrial carcinoma |
h |
Numeric variable. Specify the layer of deconvolution in the hierarchical model. Default is 6. |
tissue_type |
specify whether the tissue is tumor. Default is tumor. If not tumor, the function will preset the tumor purity to 0. |
A matrix with predicted cell proportions in tumor microenvironment.
#Step 1: Load example data
library(ExperimentHub)
Example_Beta<-query(ExperimentHub(), "HiTIMED")[["EH8092"]]
#Step 2: Run HiTIMED and show results
HiTIMED_result<-HiTIMED_deconvolution(Example_Beta,"COAD",6,"tumor")
head(HiTIMED_result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.