```{css, echo=FALSE} body .main-container{ max-width: 100%; width: 1800px; margin-left: auto; margin-right: auto; } body { max-width:1800px; }
```r knitr::opts_chunk$set( collapse = TRUE, comment = "#>")
library(tidycharts) set_margins(left = 25, top = 50) library(dplyr) df <- data.frame(x = letters[1:20], val = rnorm(20, mean = 5), style = rep('actual',20))
column_chart(df, 'x', 'val') %>% SVGrenderer()
column_chart(df, 'x', 'val', interval = 'days') %>% SVGrenderer()
df <- data.frame( x = seq.Date(as.Date('2021-01-01'), as.Date('2021-07-01'), length.out = 200), 'Company_sin' = 5 * sin(seq( from = 0, to = 2 * pi, length.out = 200 )) + rnorm(200, mean = 5, sd = 0.5), 'Company_cos' = 5 * cos(seq( from = 0, to = 2 * pi, length.out = 200 )) + rnorm(200, mean = 5, sd = 0.5) ) df <- head(df, n = 199) l <- df %>% parse_time_series(., dates = 'x', series = c('Company_sin', 'Company_cos')) line_chart_dense_custom( list = l, vector_x = c('x', 'x'), vector_y = c('y', 'y'), vector_cat = c('cat', 'cat'), series_labels = 'test_data', df_numbers = 1, point_cords = NULL ) %>% SVGrenderer()
line_chart_dense(df, dates = 'x', series = c('Company_sin', 'Company_cos')) %>% SVGrenderer()
data <- data.frame( city = c( "Berlin", "Munich", "Cologne", "London", "Vienna", "Paris", "Zurich", "Rest" ), value = c(1159, 795, 377, 345, 266, 120, 74, 602), products = c(538, 250, -75, -301, 227, 90, 40, 269), services = c(621, 545, -302, -44, 39, 30, 34, 333), triangles = c(600, 600, -302, 600, 600, 30, 600, 600) ) groups <- c("products") series <- c("triangles", "products", "services") styles <- c(rep('actual', 6), 'forecast', 'actual') df_styles <- data.frame( products = c(rep('plan', 8)), services = c(rep('actual', 8)), triangles = c(rep('plan', 8)) ) df <- data.frame( animal = c("cat", "doggo", "rabbito"), hungry = c(7, 5, 9), relaxed = c(3, 4, 5), wounded = c(1, 8, 5) ) srs <- c("hungry", "relaxed", "wounded") df_waterfall <- data.frame( 'category' = c( "Sales", "Other income", "Personnel expenses", "Material expenses", "Capital expenses", "Investment income" ), 'values' = c(12.8, 1.4, -4.2, -8.5, -3.1, 0.6) )
bar_chart(data, data$city, groups, groups, styles = styles) %>% SVGrenderer() bar_chart_reference(df, df$animal, series = srs, ref_val = 3, series_labels = srs) %>% SVGrenderer() bar_chart_reference( data, cat = data$city, groups, ref_val = 602, series_labels = groups ) %>% SVGrenderer() groups2 <- c(groups, 'services') bar_chart_normalized(data, data$city, groups2, groups2) %>% SVGrenderer() bar_chart_grouped(data, data$city, series[2], series[3], series[1], series, styles = df_styles) %>% SVGrenderer() bar_chart_absolute_variance(data = data, cat = 'city', baseline = data$products, real = data$services, y_title = 'profit') %>% SVGrenderer() bar_chart_relative_variance(cat = data$city, baseline = data$products, real = data$services, y_title = 'profit') %>% SVGrenderer() bar_chart_waterfall( df_waterfall$category, df_waterfall$values, add_result = TRUE, result_title = "Profit before tax" ) %>% SVGrenderer()
df <- iris %>% group_by(Species) %>% summarise(avg = mean(-1 * Sepal.Length)) df2 <- iris %>% group_by(Species) %>% summarise( avg = mean(Sepal.Length), std = sqrt(var(Sepal.Length)), median = median(Sepal.Length) ) df3 <- data.frame('sales' = c(1.5, 2.5, 1, -0.5, 5, 4), 'month' = c('a','b','c','d','e', 'F')) df4 <- data.frame( 'month' = c('a','b','c','d','e', 'F', 'G'), 's1' = c(1.5, 1.5, 1.6, 1.7, 1.3, 1.2, 1), 's2' = c(1.9, 1.8, 1 , 1.3, 1.7, 1.5, 2), 's3' = c(0.9, 1.8, 1 , 1.3, 1.7, 1.5, 2)) styles <- data.frame( 's1' = c(rep('actual',6), 'forecast'), 's2' = rep('plan',7), 's3' = rep('previous',7) )
column_chart(df, x = df$Species, series = c("avg"), styles = c('actual', 'actual', 'forecast')) %>% SVGrenderer() column_chart(df, x = df$Species, series = c("avg")) %>% add_title(line1 = 'Iris', line2_measure = "Typical measure", line2_rest = "in cm", line3 = "2020..2021") %>% SVGrenderer() column_chart( df2, x = df2$Species, series = c("avg", "std", "median") ) %>% SVGrenderer() df$avg <- df$avg * -1 column_chart_normalized( df2, x = df2$Species, series = c("avg", "std", "median") ) %>% SVGrenderer() column_chart_reference( df, x = df$Species, series = c("avg"), ref_value = 5.01 ) %>% SVGrenderer() column_chart_waterfall(df, x = df$Species, series = c("avg")) %>% SVGrenderer() column_chart_waterfall( df, x = df$Species, series = c("avg"), styles = c('previous', 'actual', 'actual') ) %>% SVGrenderer() column_chart_absolute_variance(df4$month, df4$s1, df4$s2, colors = 1, x_title = 'PL', x_style = 'plan') %>% SVGrenderer() column_chart_grouped( df4$month, foreground = df4$s1, background = df4$s2, markers = df4$s3, series_labels = c("Actual", "Looooooooong series name", "Previous year"), styles = styles ) %>% SVGrenderer() column_chart_relative_variance( df4$month, df4$s1, df4$s2, colors = 1, x_title = "Serie", x_style = 'plan', styles = styles$s1 ) %>% SVGrenderer() column_chart_waterfall_variance( df4$month, df4$s1, df4$s2, colors = 1, result_title = "Total" ) %>% SVGrenderer()
data <- data.frame( cat = c("blop", "mlem", "kwak", "beep", "moo"), val1 = c(1, 3, 5, 7, 7), val2 = c(3, 3, -3. - 5, -4, 3), val3 = c(8, 8.5, -8, -9, 9.2) ) groups <- c("val1", "val2", "val3") line_chart_markers_reference(data, data$cat, groups, c("jeden", "dwa", "trzy"), 7) %>% SVGrenderer() line_chart_markers(data, data$cat, groups, c("jeden", "dwa", "trzy")) %>% SVGrenderer() data <- data.frame( x = c(5, 25, 45, 65, 85, 30, 60, 90, 30, 60, 90, 30, 60, 90), y = c(3, 4, 3, 5, 2, 6, 7, 6, 5, 6, 5, 7, 7, 6), cat = c( "Jan", "Jan", "Jan", "Jan", "Jan", "Feb", "Feb", "Feb", "Mar", "Mar", "Mar", "Apr", "Apr", "Apr" ) ) df <- data.frame( xdf = c(5, 25, 45, 65, 5, 25, 45, 65, 30, 60, 90, 30, 60, 90), ydf = c(7, 8, 4, 6, 4, 5, 2, -1, -3, -4, 4 , 5, 2, 2), cat = c( "Jan", "Jan", "Jan", "Jan", "Feb", "Feb", "Feb", "Feb", "Mar", "Mar", "Mar", "Apr", "Apr", "Apr" ) ) mlem <- data.frame( df_num = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), point_cords = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) ) lista <- list(data, df) xes <- c("x", "xdf") yes <- c("y", "ydf") cats <- c("cat", "cat") line_chart_dense_custom(lista, xes, yes, cats, c("kwak", "moo"), mlem$df_num, mlem$point_cords) %>% SVGrenderer() df <- data.frame( animal = c("cat", "doggo", "rabbito"), hungry = c(7, 5, 9), relaxed = c(3, 4, 5), wounded = c(1, 8, 5) ) srs <- c("hungry", "relaxed", "wounded") line_chart_markers(df, df$animal, srs, srs) %>% SVGrenderer() data <- data.frame( cat = c("blop", "mlem", "kwak", "beep", "moo"), val1 = c(8, 8.5, 8, 9, 9.2), val2 = c(5, 6, 5, 7, 7), val3 = c(3, 3, 3.5, 4, 3) ) groups <- c("val1", "val2", "val3") series_labels <- c("speed", "mlemler", "defence") line_chart_normalized(data, data$cat, groups, series_labels, c(NA, 1, 1, 1, NA)) %>% SVGrenderer() data <- data.frame( city = c( "Berlin", "Munich", "Cologne", "London", "Vienna", "Paris", "Zurich", "Rest" ), value = c(1159, 795, 377, 345, 266, 120, 74, 602), products = c(538, 250, 75, 301, 227, 90, 40, 269), services = c(621, 545, 302, 44, 39, 30, 34, 333) ) groups <- c("products", "services") series_labels <- groups line_chart_stacked(data, data$city, groups, series_labels, T) %>% SVGrenderer() data <- data.frame( cat = c("blop", "mlem", "kwak", "beep", "moo"), val1 = c(8, 8.5, 8, 9, 9.2), val2 = c(5, 6, 5, 7, 7), val3 = c(3, 3, 3.5, 4, 3) ) groups <- c("val1", "val2", "val3") labels <- groups line_chart_stacked(data, data$cat, groups, labels, c(NA, 1, 1, NA, NA)) %>% SVGrenderer() data <- data.frame( city = c( "Berlin", "Munich", "Cologne", "London", "Vienna", "Paris", "Zurich", "Rest" ), value = c(1159, 795, 377, 345, 266, 120, 74, 602), products = c(538, 250, 75, 301, 227, 90, 40, 269), services = c(621, 545, 302, 44, 39, 30, 34, 333) ) groups <- c("products", "services") df <- data.frame( ser_name = c( "products", "products", "products", "products", "products", "products", "products", "products" ), point_coordinates = c(1, 2, 3, 4, 5, 6, 7, 8) ) series_labels <- groups line_chart(data, data$city, groups, series_labels, df$ser_name, df$point_coordinates) %>% SVGrenderer() df <- data.frame( x = seq.Date(as.Date('2021-01-01'), as.Date('2022-01-01'), length.out = 200), y = 5 * sin(seq( from = 0, to = 2 * pi, length.out = 200 )) + rnorm(200, mean = 5, sd = 0.5) ) df <- df[df$x < as.Date('2021-02-28'), ] dates = seq.Date(as.Date('2021-07-01'), as.Date('2021-08-31'), by = 1) df <- data.frame( dates = dates, y = seq(8, 8, along.with = dates) + rnorm(length(dates), sd = 0.5), z = seq(6, 6, along.with = dates) + rcauchy(length(dates), scale = 0.5) ) line_chart_dense(df, dates = 'dates', series = c('y', 'z'), interval = 'weeks') %>% SVGrenderer()
df <- data.frame(x = letters[1:20], val = rnorm(20, mean = 5), style = rep('actual',20)) join_charts(column_chart(df, 'x', 'val'), column_chart(df, 'x', 'val')) %>% SVGrenderer() df2 <- data.frame(x = month.abb[1:6], y = rnorm(6, mean = 3), z = rnorm(6, mean = 4)) join_charts( column_chart(df2, x = 'x', series = 'y'), column_chart(df2, x = 'x', series = 'z'), column_chart(df2, x = 'x', series = c('y', 'z')), nrows = 2, ncols = 2 ) %>% SVGrenderer()
library(palmerpenguins) library(tidyverse) p <- penguins %>% drop_na(bill_length_mm, flipper_length_mm, bill_length_mm, body_mass_g) #--- bill length on the x-axis --- scatter1 <- scatter_plot(p, p$bill_length_mm, p$bill_depth_mm, p$species, 10, 5, c("bill length", "in mm"), c("bill depht", "in mm"), "Legend") %>% add_title("Relationship between bill length and bill depth","","") scatter2 <- scatter_plot(p, p$bill_length_mm, p$flipper_length_mm, p$species, 10, 50, c("bill length", "in mm"), c("flipper length", "in mm"), "Legend") %>% add_title("Relationship between bill length and flipper length","","") scatter3 <- scatter_plot(p, p$bill_length_mm, p$body_mass_g, p$species, 10, 1000, c("bill length", "in mm"), c("body mass", "in g"), "Legend") %>% add_title("Relationship between bill length and body mass","","") #--- bill depht on the x -axis --- scatter4 <- scatter_plot(p, p$bill_depth_mm, p$bill_length_mm, x_space_size = 5, y_space_size = 10, x_names = c("bill depht", "in mm"), y_names = c("bill length", "in mm"), legend_title = "Legend") %>% add_title("Relationship between bill depth and bill length","","") scatter5 <- scatter_plot(p, p$bill_depth_mm, p$flipper_length_mm, p$species, 5, 50, c("bill depht", "in mm"), c("flipper length", "in mm"), "Legend") %>% add_title("Relationship between bill depth and flipper length","","") scatter6 <- scatter_plot(p, p$bill_depth_mm, p$body_mass_g, p$species, 5, 1000, c("bill depht", "in mm"), c("body mass", "in g"), "Legend") %>% add_title("Relationship between bill length and body mass","","") join_charts(scatter1, scatter2, scatter3, scatter4, scatter5, nrows=2, ncols=3) %>% SVGrenderer()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.