BestPredFFS: Select best performance layers for classification

Description Usage Arguments Details Value Note Author(s) Examples

View source: R/BestPredFFS.R

Description

uses a forward feature selection (FFS) to select the best predictors for the classification

Usage

1
BestPredFFS(tDat, predCol = "default", classCol = NULL, Cores = 1)

Arguments

tDat

data.frame - with values of the predictors (see details)

predCol

numeric - seq of columns with the predictor values. By default uses 1:(length(tDat)-1) for tDat format computed by 'IKARUS::exrct_Traindat'

classCol

character - name of the column containing the class information

Cores

numeric - amount of Cores to exclude from calculation, default = 1

Details

The function is used to select best performing predictor variables for a classification. The

Value

returns a list of best performing predictors

Note

The function will compute a huge number of models. Depending on the sizes of the training data the process can take long time even with multicore processing.

Author(s)

Andreas Schönberg

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
# load data
require(caret)
require(CAST)
require(doParallel)
require(raster)
require(IKARUS)
lau_Stk <- raster::stack(system.file("extdata","lau_RGB.grd",package = "IKARUS"))
lau_tP <-rgdal::readOGR(system.file("extdata","lau_TrainPolygon.shp",package = "IKARUS"))
crs(lau_tP) <- crs(lau_Stk)
### extract values using 'IKARUS::exrct_Traindat'
tDat <- exrct_Traindat(lau_tP,lau_Stk,"class")
# FFS with all layers in the RasterStack (this example could take some minutes)
ffs <- BestPredFFS(tDat=tDat,classCol = "class")
# some code to look at the results
ffs$selectedvars # show seleted variables
ffs$perf_all # show performance of all combinations
ffs$finalModel # show confusion matrix

SchoenbergA/IKARUS documentation built on Sept. 8, 2021, 11:11 a.m.