library(PhenoComb)
input_folder <- "/path/to/input/folder"
output_folder <- "path/to/output/folder"
cell_file <- "cell_data.fcs" # or "cell_data.csv"
channel_file <- "channel_data.csv"
sample_file <- "sample_data.csv"
# Process raw data and generates all combinatorial phenotypes
combinatorial_phenotype_counts_server(file.path(input_folder,cell_file),
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
output_folder,
parent_phen = NULL,
min_count = 10,
max_phenotype_length = 0,
sampleID_col = "Sample_ID",
save_cell_data = TRUE,
continue = TRUE,
verbose = TRUE,
max_ram = 0,
efficient = TRUE,
n_threads = 10
)
# Filter statistically relevant phenotypes
#(Change groups_colum, g1, g2, and parent_phen accordingly to your data)
statistically_relevant_phenotypes_server(output_folder,
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
test_type = "group",
groups_column = "Group",
g1 = "g1",
g2 = "g2",
max_pval = 0.05,
parent_phen = NULL,
continue = TRUE,
n_threads = 10,
verbose = TRUE
)
# Compute independent statistically relevant phenotypes
get_independent_relevant_phenotypes_server(output_folder,
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
n_phenotypes = 1000,
min_confidence = 0.0,
n_threads = 10,
verbose = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.