# To run using Rscript
library(PhenoComb)
input_folder <- "../PhenoCombAnalysis/input"
output_folder <- "../PhenoCombAnalysis/output"
cell_file <- "concat_1.fcs" # or "cell_data.csv"
channel_file <- "threshold_data.csv"
sample_file <- "ncell_filtered_sample_data.csv"
# Process raw data and generates all combinatorial phenotypes
combinatorial_phenotype_counts_server(file.path(input_folder,cell_file),
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
output_folder,
parent_phen = NULL,
min_count = 10,
sample_fraction_min_counts = 0.5,
max_phenotype_length = 0,
sampleID_col = "Sample_ID",
save_cell_data = TRUE,
continue = TRUE,
verbose = TRUE,
max_ram = 0,
efficient = TRUE,
n_threads = 50
)
# Filter statistically relevant phenotypes
statistically_relevant_phenotypes_server(output_folder,
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
output_file = "significant_phenotypes_CD3+_parent.csv",
log_file = "significant_phenotypes_CD3+_parent.log",
test_type = "survival",
survival_time_column = "survival_time_from_seroconversion",
survival_status_column = "death",
parent_phen = "CD3+",
max_pval = 1.0,
continue = TRUE,
n_threads = 50,
verbose = TRUE)
# Compute independent statistically relevant phenotypes
get_independent_relevant_phenotypes_server(output_folder,
file.path(input_folder,channel_file),
file.path(input_folder,sample_file),
#input_significant_phenotypes = "significant_phenotypes_CD3+_parent.csv",
output_file = "independent_phenotypes_pval_0.0000005_5000_phenotypes.csv",
log_file = "independent_phenotypes_pval_0.0000005_5000_phenotypes.log",
n_phenotypes = 5000,
min_confidence = 0.0,
max_pval = 0.0000005,
n_threads = 50,
verbose = TRUE
)
1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.