plot.mcmcFD: Plot Method for First Differences from MCMC output

View source: R/mcmcFD.R

plot.mcmcFDR Documentation

Plot Method for First Differences from MCMC output

Description

The plot method for first differences generated from MCMC output by mcmcFD. For more on this method, see Long (1997, Sage Publications), and King, Tomz, and Wittenberg (2000, American Journal of Political Science 44(2): 347-361). For a description of this type of plot, see Figure 1 in Karreth (2018, International Interactions 44(3): 463-90).

Usage

## S3 method for class 'mcmcFD'
plot(x, ROPE = NULL, ...)

Arguments

x

Output generated from mcmcFD(..., full_sims = TRUE).

ROPE

defaults to NULL. If not NULL, a numeric vector of length two, defining the Region of Practical Equivalence around 0. See Kruschke (2013, Journal of Experimental Psychology 143(2): 573-603) for more on the ROPE.

...

optional arguments to theme from ggplot2.

Value

a density plot of the differences in probabilities. The plot is made with ggplot2 and can be passed on as an object to customize. Annotated numbers show the percent of posterior draws with the same sign as the median estimate (if ROPE = NULL) or on the same side of the ROPE as the median estimate (if ROPE is specified).

References

  • Karreth, Johannes. 2018. “The Economic Leverage of International Organizations in Interstate Disputes.” International Interactions 44 (3): 463-90. https://doi.org/10.1080/03050629.2018.1389728.

  • King, Gary, Michael Tomz, and Jason Wittenberg. 2000. “Making the Most of Statistical Analyses: Improving Interpretation and Presentation.” American Journal of Political Science 44 (2): 347–61. http://www.jstor.org/stable/2669316.

  • Kruschke, John K. 2013. “Bayesian Estimation Supersedes the T-Test.” Journal of Experimental Psychology: General 142 (2): 573–603. https://doi.org/10.1037/a0029146.

  • Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks: Sage Publications.

See Also

mcmcFD

Examples



if (interactive()) {
## simulating data
set.seed(1234)
b0 <- 0.2 # true value for the intercept
b1 <- 0.5 # true value for first beta
b2 <- 0.7 # true value for second beta
n <- 500 # sample size
X1 <- runif(n, -1, 1)
X2 <- runif(n, -1, 1)
Z <- b0 + b1 * X1 + b2 * X2
pr <- 1 / (1 + exp(-Z)) # inv logit function
Y <- rbinom(n, 1, pr) 
df <- data.frame(cbind(X1, X2, Y))

## formatting the data for jags
datjags <- as.list(df)
datjags$N <- length(datjags$Y)

## creating jags model
model <- function()  {
  
  for(i in 1:N){
    Y[i] ~ dbern(p[i])  ## Bernoulli distribution of y_i
    logit(p[i]) <- mu[i]    ## Logit link function
    mu[i] <- b[1] + 
      b[2] * X1[i] + 
      b[3] * X2[i]
  }
  
  for(j in 1:3){
    b[j] ~ dnorm(0, 0.001) ## Use a coefficient vector for simplicity
  }
  
}

params <- c("b")
inits1 <- list("b" = rep(0, 3))
inits2 <- list("b" = rep(0, 3))
inits <- list(inits1, inits2)

## fitting the model with R2jags
set.seed(123)
fit <- R2jags::jags(data = datjags, inits = inits, 
                    parameters.to.save = params, n.chains = 2, n.iter = 2000, 
                    n.burnin = 1000, model.file = model)

## preparing data for mcmcFD()
xmat <- model.matrix(Y ~ X1 + X2, data = df)
mcmc <- coda::as.mcmc(fit)
mcmc_mat <- as.matrix(mcmc)[, 1:ncol(xmat)]

## plotting with mcmcFDplot()
full <- mcmcFD(modelmatrix = xmat,
               mcmcout = mcmc_mat,
               fullsims = TRUE)
plot(full)

}





ShanaScogin/BayesPostEst documentation built on May 20, 2022, 6:36 p.m.