one_hot | R Documentation |
One-hot encoding on categorical variables and replace missing values. It is not needed when creating a standard scorecard model, but required in models that without doing woe transformation.
one_hot(dt, var_skip = NULL, var_encode = NULL, nacol_rm = FALSE, ...)
dt |
A data frame. |
var_skip |
Name of categorical variables that will skip for one-hot encoding. Defaults to NULL. |
var_encode |
Name of categorical variables to be one-hot encoded, Defaults to NULL. If it is NULL, then all categorical variables except in var_skip are counted. |
nacol_rm |
Logical. One-hot encoding on categorical variable contains missing values, whether to remove the column generated to indicate the presence of NAs. Defaults to FALSE. |
... |
Additional parameters. |
A data frame
# load germancredit data
data(germancredit)
library(data.table)
dat = rbind(
setDT(germancredit)[, c(sample(20,3),21)],
data.table(creditability=sample(c("good","bad"),10,replace=TRUE)),
fill=TRUE)
# one hot encoding
## keep na columns from categorical variable
dat_onehot1 = one_hot(dat, var_skip = 'creditability', nacol_rm = FALSE) # default
str(dat_onehot1)
## remove na columns from categorical variable
dat_onehot2 = one_hot(dat, var_skip = 'creditability', nacol_rm = TRUE)
str(dat_onehot2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.