#' @title Summarize systematic sample
#' @description Summarizes population-level statistics for
#' systematic sample data. The calculations are derived from Chapter 3 in
#' Avery and Burkhart's (1967) Forest Measurements, Fifth Edition. The
#' variance terms refer to the variance of the mean, hence the
#' \code{sampleSize} terms in the denominators.
#' @usage summarize_systematic(data, attribute = 'attr',
#' popSize = NA, desiredConfidence = 0.95)
#' @param data data frame or vector containing observations of
#' variable of interest. Variable of interest must already be expanded
#' to the level of interest (e.g. stand-level).
#' @param attribute character name of attribute to be summarized.
#' Must be defined if data is input as a data frame.
#' @param popSize numeric population size. Defaults to NA (unknown popSize).
#' @param desiredConfidence numeric desired confidence level (e.g. 0.9).
#' @return a data frame of population mean, variance, standard error, and
#' high and low confidence limits.
#' @author Karin Wolken
#' @import dplyr
#' @examples
#' \dontrun{
#'
#' # See Forest Sampling vignette for more details
#'
#' # Data frame input data can be expressed as:
#'
#' trainingData <- data.frame(
#' bapa = c(120, 140, 160, 110, 100, 90),
#' plots = c(1, 2, 3, 4, 5, 6)
#' )
#' attribute <- "bapa"
#' desiredConfidence <- 0.9
#'
#' # Vector input data can be expressed as:
#'
#' vector <- c(120, 140, 160, 110, 100, 90)
#' }
#' @export
summarize_systematic <- function(data, attribute = "attr",
popSize = NA, desiredConfidence = 0.95) {
# return data frame of key values
summarize_simple_random(
data = data,
attribute,
popSize,
desiredConfidence,
FALSE
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.