#' A complete table for multiple univariable survival analysis by using log rank test
#'
#'JS.uniLR_m output the table with general multivariable survival analysis result with Number of total patients,
#'Number of Events, Estimited Survival,P value. This function only change the format of the output table.
#'@param D A data.frame in which to interpret the variables
#'@param Event The status indicator, normally 0=alive, 1=dead
#'@param Stime This is the follow up time
#'@param Svars A vector of variables
#'@param groupns A text vector of the the group names for output
#'@param month Time for estimiated survival in month
#'@param Rho a scalar parameter that controls the type of test. With 'rho = 0' this is the log-rank or Mantel-Haenszel test, and with 'rho = 1' it is equivalent to the Peto & Peto modification of the Gehan-Wilcoxon test.
#'@return A dataframe of log rank test output including Number of total patients, Number of Events, Estimated Survival ,P values
#'@examples
#'Event <- c("pd_censor")
#'Stime <- c("pd_surv")
#'Svars <- c("tr_group", "age_m")
#'Groupns <- c("Treatment", "Age")
#'JS.uniLR_m(D, Event, Stime, Svars, Groupns, 60)
#'
#'@export
#'@name JS.uniLR_m
#'
#'
JS.uniLR_m <- function (Data, Event, Stime, Svars, groupns, month, Rho = 0,ci95 = FALSE){
rs.all <- NULL
for (i in 1:length(Svars))
{
rs <- JS.uniLR(Data, Event, Stime, Svars[i] , groupns[i], month, Rho, ci95)
rs.all <- rbind(rs.all, rs)
}
return(rs.all)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.