# ### STEP 6:
# # adding confidence ratings
#
# library(targets)
# library(tarchetypes)
# library(stantargets)
# wztools::setOptions()
# wztools::sourceAll(path = 'project-XX/1_functions', pattern = '_func')
# tar_option_set(packages = c('XXtools','tidyverse', 'wztools', 'cmdstanr'))
#
# list(
#
# ### 1. Setup ###
#
# # specify task a) structure-related parameters, and b) non-modelled parameters for simulation
# tar_target(name = exp_struct_list,
# command = create_exp2_setup()
# )
# ,
# #specify group level parameters (mus)
# tar_target(name = mu_list,
# command = list(mu_XX1 =0,
# #setting multiple values is allowed (will result in automatic branching)
# mu_XX2 =base::sample(c(-1.00, 0.0, 1.00),2),
# )
# )
# ,
#
# #list of ranges
# tar_target(name = range_list,
# command= list(mu_XX1 = c(-5,5),
# # to fix the parameter, set min & max to the fixed value, e.g.,:
# mu_XX2 = c(1,1) #
# )
# )
# ,
# #list of group-level variability around the mean (beta-space)
# tar_target(name = sigma_list,
# command = list(mu_XX1 = .10, #default variability
# mu_XX2 = .05 #decreased variability
# )
# )
# ,
# #list specifying fixed parameters (-1: NON-FIXED; any other value: fixed to that value)
# tar_target(name = fixed_pars,
# command = list(fix_XX1 = -1, #not fixed
# fix_XX2 = 1 #fix value has to correspond to the one in range_list
# )
# )
# ,
#
#
# ### 2. Simulate individual pars and task skeleton ###
#
# #simulate individual parameters
# tar_target(name=ind_pars,
# command = sim_ind_pars_multi(exp_struct_list, mu_list, sigma_list, range_list))
# ,
# #simulate task skeleton (with embedded parameter values as col names!)
# #(added '_true' to par name, e.g. XX_true)
# tar_target(name=empty_task_df,
# command = sim_taskXX_empty_multi(exp_struct_list, mu_list, ind_pars)
# )
# ,
# #group by simulation
# tar_group_by(name = branching,
# command = empty_task_df,
# sim_num
# ),
# tar_target(name = empty_df_grouped,
# command=branching,
# pattern=map(branching)
# )
# ,
#
#
#
# ### 3. Stan list conversion ###
#
# # convert to stan-list (one for each simulation)
# tar_target(name = stan_list_skeleton,
# command = make_stan_list(dat=empty_df_grouped,
# var_names=c('outcomeA','outcomeB','reward', 'observation', 'is_rating'),
# grouping_vars_stan_names=c('numSubj', 'numGames', 'numTrials')
# ),
# pattern = map(empty_df_grouped)
#
# ),#extract individual parameter list
# tar_target(name = gen_pars_list,
# command = pars_to_stan(empty_df_grouped, mu_list),
# pattern = map(empty_df_grouped)
# )
# ,# combine
# tar_target(name = stan_list_gen_prep,
# command = c(stan_list_skeleton, gen_pars_list),
# pattern = map(stan_list_skeleton, gen_pars_list)
# )
# ,#format for specific experiment: change reward dimentionality
# tar_target(name = stan_list_gen,
# command = format_stan_list_gen_XX(stan_list_gen_prep),
# pattern = map(stan_list_gen_prep)
# )
# ,
#
#
#
# ### 4. SIMULATE ###
# tar_target(name = stan_sim,
# command =fit_model_gen(stan_data=stan_list_gen,
# model_file= c(paste0(getwd(),'/stan/stepXX_gen.stan')),#'D:/Observing_bandits/2_models/exp2/1.prior_predictive_checks/Step5/stan/step5_gen.stan',
# summary_only=T
# ),
# pattern = map(stan_list_gen)
# )
# ,
#
# #get back simulated choices and ratings
# tar_target(name=pred_long,
# command = extract_preds(stan_sim, c('d_pred', 'r_pred')), #_summary_E2_zoib_gq
# pattern=map(stan_sim)
# )
# ,
# # # wide data
# tar_target(name=pred,
# command = widen_preds(pred_long),
# pattern=map(pred_long)
# )
# ,
# # join with the skeleton df (for exploration)
# tar_target(name = pred_full,
# command = left_join(empty_df_grouped, pred),
# pattern = map(empty_df_grouped, pred)
# )
# ,
# ## REPORT 1 CAN GO HERE
#
#
#
# ### 5. FIT ####
# # predictions to list
# tar_target(name = rec_list_add,
# command = make_stan_list(dat = pred,
# var_names=c('d_pred','r_pred')),
# pattern = map(pred))
# ,
# #recover list (combine 3 lists: skeleton, fixed parameters and predictions)
# tar_target(rec_list_prep,
# command = modifyList(c(stan_list_gen, fixed_pars),rec_list_add),
# pattern = map(stan_list_gen, rec_list_add))
# ,
# #prep for recovery: change names dpred -> choice; rpred->rating
# tar_target(name = rec_list,
# command = format_stan_list_rec_step6(rec_list_prep),
# pattern = map(rec_list_prep))
# ,
#
# tar_target(name = mrec,
# command = fit_model(
# stan_data = rec_list,
# model_file= c(paste0(getwd(),'/stan/step6.stan')),
# summary_only=T,
# iter_warmup = 500,
# iter_sampling=500,
# chains = 2,
# parallel_chains = 2,
# refresh = 10
# ),
# pattern = map(rec_list)
# )
# # ,
#
# # ### 6. EXTRACT VALUES ###
# #
# # # # get mus
# # tar_target(name = mu_fit,
# # command = get_mus2(stan_fit_summary=mrec,
# # mu_list=mu_list,
# # model_num = 1)#length(model_files) from target above
# # ),
# # #
# # # get individual
# # tar_target(name = ind_fit,
# # command = get_inds_temp(stan_fit_summary=recovered_fit,
# # ind_pars=ind_pars,
# # model_num = 1)
# # )
#
# ### CURRENT END
#
#
#
#
#
#
#
#
#
# # #
# # # report 2
# # tar_render(name = report_fit, "Step5_fit_report.Rmd"
# # )
#
# )
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.