# "z11_attributes_100m"
# library(dplyr)
#
# census_100m_files_directory <- "../z11data-raw/"
#
# census_100m_files <-
# c(
# "Zensus_Bevoelkerung_100m-Gitter.csv", "Bevoelkerung100M.csv",
# "Familie100m.csv", "Geb100m.csv", "Haushalte100m.csv",
# "Wohnungen100m.csv"
# )
# # large inhabitants table as attribute
# Zensus_Bevoelkerung_100m_Gitter <-
# data.table::fread(
# paste0(census_100m_files_directory, census_100m_files[1])
# ) %>%
# dtplyr::lazy_dt() %>%
# dplyr::select(Gitter_ID_100m, Einwohner) %>%
# dplyr::mutate(Einwohner = dplyr::na_if(Einwohner, -1)) %>%
# tibble::as_tibble() %>%
# tidyr::drop_na() %>%
# saveRDS(paste0("../z11data/100m/Einwohner.rds"))
# store all other attributes as small as possible
# purrr::map(2:length(census_100m_files), function (i) {
#
# # load file as data.table
# whole_file <-
# data.table::fread(
# paste0(census_100m_files_directory, census_100m_files[i])
# ) %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m()
#
# names(whole_file) <- stringr::str_trim(names(whole_file))
#
# if ("INSGESAMT_0" %in% colnames(whole_file)) {
# insgesamt_name <-
# paste0(
# "INSGESAMT_",
# census_100m_files[i] %>%
# gsub("100m.csv", "", .) %>%
# gsub("100M.csv", "", .)
# )
#
# whole_file <-
# whole_file %>%
# dplyr::rename(!!insgesamt_name := "INSGESAMT_0")
# }
#
# # get names apart from gitter id
# names_whole_file <- whole_file$vars %>% .[-1]
#
# # store individual files for each attribute
# purrr::map(names_whole_file, function (j) {
# whole_file %>%
# dtplyr::lazy_dt() %>%
# dplyr::select(Gitter_ID_100m, !!j) %>%
# tibble::as_tibble() %>%
# tidyr::drop_na() %>%
# saveRDS(., paste0("../z11data/100m/", j, ".rds"))
# # saveRDS(., paste0("./inst/extdata/100m/", j, ".rds"))
# })
# })
#
# # create and save index
# index_100m <-
# list.files("../z11data/100m/") %>%
# sub(".rds", "", .) %>%
# setdiff(c("Gitter_ID_100m_x_y", "INSGESAMT_0")) %>%
# readr::write_lines(file = "./inst/extdata/index_100m")
#### OLD
# tmp <-
# dplyr::left_join(
# readRDS("./inst/extdata/100m/Gitter_ID_100m_x_y.rds"),
# readRDS("./inst/extdata/100m/STAATZHL_1.rds"),
# )
# tmp <-
# Bevoelkerung100M %>%
# dplyr::select(Gitter_ID_100m, ALTER_10JG_1) %>%
# tibble::as_tibble() %>%
# tidyr::drop_na()
#
# dplyr::left_join(
# Zensus_Bevoelkerung_100m_Gitter %>%
# dplyr::select(Gitter_ID_100m, x_mp_100m, y_mp_100m),
# .
# )
#
# readr::write_csv(tmp %>% as_tibble(), "./inst/extdata/tmp.csv")
#
# saveRDS(tmp %>% as_tibble(), "./inst/extdata/tmp.rds")
#
#
# Bevoelkerung100M <-
# data.table::fread("./data-raw/Bevoelkerung100M.csv") %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m() %>%
# dtplyr::lazy_dt() %>%
# dplyr::mutate(source = "Bevoelkerung100M")
#
# saveRDS(
# Bevoelkerung100M,
# "./inst/extdata/Bevoelkerung100M.rds"
# )
#
# gc()
#
# Familie100m <-
# data.table::fread("./data-raw/Familie100m.csv") %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m() %>%
# dtplyr::lazy_dt() %>%
# dplyr::mutate(source = "Familie100m")
#
# saveRDS(
# Familie100m,
# "./inst/extdata/Familie100m.rds"
# )
#
# gc()
#
# Geb100m <-
# data.table::fread("./data-raw/Geb100m.csv") %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m() %>%
# dtplyr::lazy_dt() %>%
# dplyr::mutate(source = "Geb100m")
#
# saveRDS(
# Geb100m,
# "./inst/extdata/Geb100m.rds"
# )
#
# gc()
#
# Haushalte100m <-
# data.table::fread("./data-raw/Haushalte100m.csv") %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m() %>%
# dtplyr::lazy_dt() %>%
# dplyr::mutate(source = "Haushalte100m")
#
# saveRDS(
# Haushalte100m,
# "./inst/extdata/Haushalte100m.rds"
# )
#
# gc()
#
# Wohnungen100m <-
# data.table::fread("./data-raw/Wohnungen100m.csv") %>%
# dtplyr::lazy_dt() %>%
# z11_wide_100m() %>%
# dtplyr::lazy_dt() %>%
# dplyr::mutate(source = "Wohnungen100m")
#
# saveRDS(
# Wohnungen100m,
# "./inst/extdata/Wohnungen100m.rds"
# )
#
# gc()
# z11_attributes_100m <-
# Zensus_Bevoelkerung_100m_Gitter %>%
# dplyr::left_join(Bevoelkerung100M) %>%
# dplyr::left_join(Familie100m) %>%
# dplyr::left_join(Geb100m) %>%
# dplyr::left_join(Haushalte100m) %>%
# dplyr::left_join(Wohnungen100m)
#
# gc()
#
# rm(
# Zensus_Bevoelkerung_100m_Gitter, Bevoelkerung100M, Familie100m, Geb100m,
# Haushalte100m, Wohnungen100m
# )
#
# gc()
#
# saveRDS(z11_attributes_100m, "./inst/extdata/z11_attributes_100m_dt.rds")
#
# z11_attributes_100m <- readRDS("./inst/extdata/z11_attributes_100m_dt.rds")
#
# z11_attributes_100m <-
# z11_attributes_100m %>%
# tibble::as_tibble() %>%
# sf::st_as_sf(coords = c("x_mp_1km", "y_mp_1km"), crs = 3035)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.