knitr::opts_chunk$set( collapse=TRUE, comment = "#>", out.width = "100%")
denoisr
is a non-parametric smoother for noisy curve data, providing different
functions to estimate various parameters:
estimate_H0_list()
and estimate_H0_deriv_list()
estimate the smoothness of
the curves.estimate_b_list()
and estimate_bandwidth()
estimate the bandwidth used in
the Nadaraya-Watson estimator.estimate_curve()
estimates one curve, given bandwidths.smooth_curves()
and smooth_curves_regularity()
estimate the curves.You can learn more about them in vignette('denoisr')
.
To install the latest version directly from Github, please use
# install.packages("devtools") devtools::install_github("StevenGolovkine/denoisr")
To build the vignette as well, please use
# install.packages("devtools") devtools::install_github("StevenGolovkine/denoisr", build_vignettes = TRUE)
The denoisr
package depends on the R
-packages doParallel
, dplyr
,
foreach
,
funData
,
iterators
,
KernSmooth
, magrittr
,
np
,
parallel
,
purrr
,
Rcpp
and
RcppArmadillo
.
The theoretical foundations of the estimation of regularity parameters and curves smoothing are described in:
Golovkine S., Klutchnikoff N., Patilea V. (2021) - Learning the smoothness of noisy curves with application to online curve reconstruction.
Please use GitHub issues for reporting bugs or issues.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.