View source: R/glmnet_ridge_fun.R
glmnet_ridge_fun | R Documentation |
ridge cox model using glmnet
glmnet_ridge_fun(r, data, cvK, formula1, formula2, formula3, formula4, timess)
r |
a numeric value, a seed to run this method |
data |
a dataframe, the data used to performance this survival model |
cvK |
a numeric value, cross-validation fold |
formula1 |
a Surv object from package survival, to calculate a version of the brier score, details please check package pec |
formula2 |
a Surv object from package survival, to calculate a version of the brier score, details please check package pec |
formula3 |
a Surv object from package survival, to calculate a version of the brier score, details please check package pec |
formula4 |
a Surv object from package survival, to calculate a version of the brier score, details please check package pec |
timess |
a numeric vector of length 15, contains time points to get the time-dependent AUC values |
numm |
a numeric value, the number of variables,i.e.for example, number of proteins in the data |
topnumm |
a numeric value, the number of variables selected to be passed into the model, for example, the number of DE genes |
fitform_ogl |
a Surv object from package survival, the survival function |
a data.frame with allevaluation measurements in all columns and rows are each fold results from cross-validation
data("exampledt", package = "SurvBenchmark") fitform_ogl=survival::Surv(time,status)~. formula1=fitform_ogl formula2=fitform_ogl formula3=survival::Surv(time,status)~1 formula4=survival::Surv(time,status)~1 form1=as.formula(~.) timess=seq(as.numeric(summary(cancerdt2_1$time)[2]),as.numeric(summary(cancerdt2_1$time)[5]),(as.numeric(summary(cancerdt2_1$time)[5])-as.numeric(summary(cancerdt2_1$time)[2]))/14) want=glmnet_ridge_fun(1,cancerdt2_1[,-dim(cancerdt2_1)[2]],5,formula1,formula2,formula3,formula4,timess);
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.