Description Usage Arguments Value Examples
View source: R/candidateRelocatedProteins.R
Identify candidate condition-dependent relocated proteins by comparing neighborhood classifications with respect to protein-protein pearson correlation and minumum PSM, peptide spectrum matching, count.
1 2 | candidateRelocatedProteins(sampleCls1, s1PSM, s1Quant, sampleCls2, s2PSM,
s2Quant, annotation = FALSE, min.psm, pearson.cor)
|
sampleCls1 |
data.frame; merged classification, combination of compartment and neighborhood classification. |
s1PSM |
data.frame; minimum PSM count table across ten TMT channel |
s1Quant |
data.frame; fractionation quantification data |
sampleCls2 |
data.frame; merged classification, combination of compartment and neighborhood classification. |
s2PSM |
data.frame; minimum PSM count table across ten TMT channel |
s2Quant |
data.frame; fractionation quantification data |
annotation |
boolean; labeling the selected proteins |
min.psm |
numeric; minimum psm, peptide spectra matching value |
pearson.cor |
numeric; pearson correlation threshold |
candidate.df
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | {
df <- loadData(SubCellBarCode::hcc827Ctrl)
c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
r.markers <- markerQualityControl(c.prots, df)
cls <- svmClassification(r.markers, df, markerProteins)
test.A <- cls[[1]]$svm.test.prob.out
test.B <- cls[[2]]$svm.test.prob.out
t.c.df <- computeThresholdCompartment(test.A, test.B)
t.n.df <- computeThresholdNeighborhood(test.A, test.B)
all.A <- cls[[1]]$all.prot.pred
all.B <- cls[[2]]$all.prot.pred
c.cls.df <- applyThresholdCompartment(all.A, all.B, t.c.df)
n.cls.df <- applyThresholdNeighborhood(all.A, all.B, t.n.df)
cls.df <- mergeCls(c.cls.df, n.cls.df)
candidate.df <- candidateRelocatedProteins(cls.df,hcc827CtrlPSMCount,
hcc827Ctrl, hcc827GEFClass, hcc827CtrlPSMCount, hcc827GEF)
candidate.df <- candidateRelocatedProteins(cls.df, hcc827CtrlPSMCount,
hcc827Ctrl, hcc827GEFClass, hcc827CtrlPSMCount, hcc827GEF,
annotation = TRUE, min.psm = 12, pearson.cor = 0.8)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.