Description Usage Arguments Value Author(s) References See Also Examples
Estimation of a MGARCH(1,1) CCC-diagonal or semi-diagonal equation by equation.
1  | estimCCC.EbEE(Omega, Alpha, Beta, eps, r = 10, model)
 | 
Omega | 
 Initialisation parameter for Omega (vector)  | 
Alpha | 
 Initialisation parameter for Alpha (vector), must be a matrix if you are using the "sdiagonal" model  | 
Beta | 
 Initialisation parameter for Beta (vector)  | 
eps | 
 m*n matrix of the serie to be estimated  | 
r | 
 Number of observations used for the initialisation  | 
model | 
 model="diagonal" if MGARCH(1,1) diagonal
  | 
Omega | 
 Estimation of Omega  | 
Alpha | 
 Estimation of Alpha  | 
Beta | 
 Estimation of Beta  | 
R | 
 Estimation of R, the correlation matrix  | 
Residuals | 
 Estimation of the residuals  | 
D. Taouss, C. Francq
C. Francq and J.M. Zakoian, Estimating multivariate GARCH and Stochastic Correlation models equation by equation, October 2014
EbEEMGARCH  Homepage of the documentation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  | ####
# Sampling a diagonal model
####
m <- 3 #Number of assets in the portfolio
Omega0 <- rep(0.01, m)
Alpha0 <- rep(0.05, m)
Beta0 <- rep(0.90, m)
R0 <- diag(rep(1, m))
Epsi <- GarchCCC.sim(2500, Omega0, Alpha0, Beta0,"diagonal", R0, "normal")
####
# Estimation of the parameters
####
Omegainit <- rep(0.1, m)
Alphainit <- rep(0.5, m)
Betainit <- rep(0.7, m)
estimCCC.EbEE(Omegainit,Alphainit,Betainit,Epsi,r=10,model="diagonal")
####
# If we allow a semi-diagonal model
####
omegainit <- rep(0.2, m)
alphainit <- matrix(rep(0.2 / m, m ^ 2), nrow = m)
betainit <- rep(0.70, m)
estimCCC.EbEE(omegainit,alphainit,betainit,Epsi,r=10,model="sdiagonal")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.