#'speciesRichness
#'@description
#'Calculates the inverse species richness for the multivar function.
#'@param data List of data generates by the Multivar function.
#'@param intervallBy Intervalls by to interpolate to.
#'@param NonNegative Creates Positive Values after Loess calculation.
#'@param Importname1 importname 1.
#'@param Importname2 importname 2.
#'@param Exportname data$Diatom$DiatomNames$
#'@export
#'@return Returns the same List but with new added parameters.
#'@author Tim Kroeger
#'@note This function has only been developed for the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research and should therefore only be used in combination with their database.
#'\cr Comma numbers are rounded up.
speciesRichness = function(data, intervallBy = 100, NonNegative = TRUE, Importname1 = "", Importname2 = "", Exportname = ""){
deleteDoubles = function(doublData){
counter = 0
for (h in 1:(dim(doublData)[1]-1)){
counter = counter+1
if(as.numeric(row.names(doublData))[counter]==as.numeric(row.names(doublData))[counter+1]){
RNames = row.names(doublData)
doublData=matrix(doublData[-counter,])
row.names(doublData) = RNames[-counter]
counter = counter-1
}
}
return(doublData)
}
DiatomNames = ls(data$Diatom)
for (z in 1:length(DiatomNames)){
speciesRichnessData = data$Diatom[[DiatomNames[z]]][[Importname1]][[Importname2]]
if(!is.null(speciesRichnessData)){
#Delete Doubles
speciesRichnessData = deleteDoubles(speciesRichnessData)
depthVectorOfData = as.numeric(row.names(speciesRichnessData))
lowerBoundry = ceiling(min(depthVectorOfData)/intervallBy)*intervallBy
upperBoundry = floor(max(depthVectorOfData)/intervallBy)*intervallBy
InterpolationMatrixRowNames = approx (x = speciesRichnessData[,1],
y = NULL,
xout = seq(from = lowerBoundry, to = upperBoundry, by = intervallBy),
method = "linear",
n = 50)[[1]]
InterpolationMatrix = matrix(NA, nrow = length(InterpolationMatrixRowNames), ncol = dim(speciesRichnessData)[2])
InterpolationMatrix[,1] = approx (x = depthVectorOfData,
y = speciesRichnessData,
xout = seq(from = lowerBoundry, to = upperBoundry, by = intervallBy),
method = "linear",
n = 50)[[2]]
colnames(InterpolationMatrix) = Importname1
rownames(InterpolationMatrix) = InterpolationMatrixRowNames
#check this minRows of the interpolated data
InterpolationMatrixLoess = InterpolationMatrix
InterpolationMatrixLoess[]=NA
#Guess Loess
span = GuessLoess(intervall = InterpolationMatrixRowNames, values = InterpolationMatrix, overspan = 100)
InterpolationMatrixLoess[,1] = predict(loess(InterpolationMatrix ~ InterpolationMatrixRowNames, span = span))
InterpolationMatrixLoess[InterpolationMatrixLoess<0]=0
speciesRichnessMatrix = matrix(NA, ncol = 2, nrow = dim(InterpolationMatrixLoess)[1])
speciesRichnessMatrix[,1] = InterpolationMatrixRowNames
speciesRichnessMatrix[,2] = InterpolationMatrixLoess
data[["Diatom"]][[DiatomNames[z]]][[Exportname]] = speciesRichnessMatrix
#Printer
cat("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
z,"/",length(ls(data[["Diatom"]]))," calculating ",Importname2,sep="")
}
}
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.