L | R Documentation |
calculate sum of squared errors (SSE) for VPRM NEE, given a set of VPRM parameters and a a set of NEE observations.
L(par, driver_data, model_form = "Mahadevan07")
par |
four-element numeric vector containing lambda, alpha, beta, PAR_0 (in that order) |
driver_data |
May be a VPRM_driver_data object or a data frame. If a data frame, driver_data must contain the variables Tscale, Pscale, Wscale, EVI, and PAR, and NEE_obs. |
model_form |
string, optional; form of VPRM model to use. Options are "Mahadevan07" (default) to use the VPRM formulation of Mahadevan et al. (2007), or "urban" to use the urbanVPRM formulation of Hardiman et al. (2017). If set to "urban", the driver data must include variables ISA proportion (impervious surface area, 0.0 to 1.0) and refEVI (reference EVI). |
"L" abbreviations likelihood; currently SSE is a standin for a statistically proper likelihood function for land surface model residuals.
sum of squared errors for VPRM NEE residuals for the specified parameters and NEE observations.
Timothy W. Hilton
Mahadevan, P., Wofsy, S., Matross, D., Xiao, X., Dunn, A., Lin, J., Gerbig, C., Munger, J., Chow, V., and Gottlieb, E.: A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global Biogeochem. Cy., 22, GB2005, doi:10.1029/2006GB002735, 2008.
Hardiman, B. S., Wang, J. A., Hutyra, L. R., Gately, C. K., Getson, J. M., & Friedl, M. A. (2017). Accounting for urban biogenic fluxes in regional carbon budgets. Science of The Total Environment, 592, 366–372. https://doi.org/10.1016/j.scitotenv.2017.03.028
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.