Description Author(s) References
This package provides tools for performing non-parametric deconvolution on measurement error problems. It contains functions for finding bandwidths, deconvolved densities and non-parametric regression estimates.
Aurore Delaigle, Timothy Hyndman, and Tianying Wang
Stefanski, L. and Carroll, R.J. (1990). Deconvoluting kernel density estimators. Statistics, 21, 2, 169-184.
Fan, J., and Truong, Y. K. (1993), Nonparametric Regression With Errors in Variables, The Annals of Statistics. 21, 1900-1925.
Carroll, R. J., Ruppert, D., and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition. Chapman Hall, New York.
Delaigle, A. and Gijbels, I. (2002). Estimation of integrated squared density derivatives from a contaminated sample. Journal of the Royal Statistical Society, B, 64, 4, 869-886.
Delaigle, A. and Gijbels, I. (2004). Practical bandwidth selection in deconvolution kernel density estimation. Computational Statistics and Data Analysis, 45, 2, 249 - 267.
Delaigle, A. and Gijbels, I. (2007). Frequent problems in calculating integrals and optimizing objective functions: a case study in density deconvolution. Statistics and Computing, 17, 349-355.
Delaigle, A., Hall, P., and Meister, A. (2008). On Deconvolution with repeated measurements. Annals of Statistics, 36, 665-685
Delaigle, A. and Hall, P. (2008). Using SIMEX for smoothing-parameter choice in errors-in-variables problems. Journal of the American Statistical Association, 103, 481, 280-287
Delaigle, A. and Meister, A. (2008). Density estimation with heteroscedastic error. Bernoulli, 14, 2, 562-579.
Delaigle, A. and Hall, P. (2016). Methodology for non-parametric deconvolution when the error distribution is unknown. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 1, 231-252.
Camirand, F., Carroll, R.J., and Delaigle, A. (2018). Estimating the distribution of episodically consumed food measured with errors. Manuscript.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.