CovidTrackerR provides basic data cleaning, wrangling and plotting of Covid tracking data in Canada.
The CovidTrackerR package is designed for the easy retrieval and analysis of data pertaining to Covid trends in Canada, including information about cases, vaccinations and testing. The package serves as a wrapper for the opencovid.ca API, and provides additional helper functions for visualising the data, either as a time series or in the form of a map.
get_covid_data()
Retrieve cleaned and formatted data of specified type and within (optionally) provided time ranges and locations
plot_time_series()
Function for plotting time series trends in Covid data, including options for trendlines and smoothing
calculate_stat_summary()
Function for returning key statistical information about Covid data, such as long run trends and comparisons between provinces
plot_geographical()
Function for plotting choropleth maps with Covid data
You can install the development version of CovidTrackerR from GitHub with:
# install.packages("devtools")
devtools::install_github("UBC-MDS/Group28-CovidTracker-R")
A vignette with full usage demonstration and function documentation can be found here https://ubc-mds.github.io/Group28-CovidTracker-R/
CovidTrackerR
can be used to acquire covid data, generate choropleth
maps and time series plots, and compute summary statistics as follows:
library(CovidTrackerR)
covid_data <- get_covid_data('active', 'BC')
head(covid_data)
#> active_cases active_cases_change cumulative_cases cumulative_deaths
#> 1 0 0 0 0
#> 2 0 0 0 0
#> 3 0 0 0 0
#> 4 1 1 1 0
#> 5 1 0 1 0
#> 6 1 0 1 0
#> cumulative_recovered date_active province
#> 1 0 25-01-2020 BC
#> 2 0 26-01-2020 BC
#> 3 0 27-01-2020 BC
#> 4 0 28-01-2020 BC
#> 5 0 29-01-2020 BC
#> 6 0 30-01-2020 BC
covid_df <- get_covid_data()
plot_geographical(covid_df, cases)
plot_timeseries(covid_df,cases)
calculate_stat_summary(covid_df,'cases')
#> province start_date end_date count sd min max mean quantile_25
#> 1 Alberta 2020-01-25 2022-02-04 742 1367.72 0 17577 678 18.0
#> 2 BC 2020-01-25 2022-02-04 742 819.90 0 9332 445 0.0
#> 3 Manitoba 2020-01-25 2022-02-04 742 439.78 0 7083 165 1.0
#> 4 New Brunswick 2020-01-25 2022-02-04 742 138.91 -2 2548 40 0.0
#> 5 NL 2020-01-25 2022-02-04 742 131.86 0 1873 24 0.0
#> 6 Nova Scotia 2020-01-25 2022-02-04 742 159.77 -1 1184 53 0.0
#> 7 Nunavut 2020-01-25 2022-02-04 742 10.98 0 140 2 0.0
#> 8 NWT 2020-01-25 2022-02-04 742 34.90 -4 314 8 0.0
#> 9 Ontario 2020-01-25 2022-02-04 742 2906.25 0 35287 1430 205.0
#> 10 PEI 2020-01-25 2022-02-04 742 50.57 0 407 11 0.0
#> 11 Quebec 2020-01-25 2022-02-04 742 2328.17 -90 17122 1179 158.5
#> 12 Repatriated 2020-01-25 2022-02-04 742 0.20 0 4 0 0.0
#> 13 Saskatchewan 2020-01-25 2022-02-04 742 255.35 0 1979 163 9.0
#> 14 Yukon 2020-01-25 2022-02-04 742 16.17 0 197 4 0.0
#> quantile_50 quantile_75 current_value
#> 1 212.0 787.50 2086
#> 2 75.5 586.25 1495
#> 3 53.5 174.50 620
#> 4 3.0 16.00 401
#> 5 0.0 3.00 258
#> 6 2.0 17.00 594
#> 7 0.0 0.00 44
#> 8 0.0 0.00 187
#> 9 551.0 1566.75 3959
#> 10 0.0 1.00 199
#> 11 655.5 1097.75 3400
#> 12 0.0 0.00 0
#> 13 73.0 222.00 771
#> 14 0.0 1.00 18
There are several R packges which have some overlapping functionality as our package, but none which perform all the data acquisition, analysis and graphing tasks which CovidTracker encompasses. The packages designed for covid data retrieval also do not use the same data source as CovidTracker and do not provide the same level of granularity. Some examples of related R packages useful for Covid data retrieval and data visualizations include:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.