knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE)
library(datascience.eda)
explore_KMeans_clustering
and explore_DBSCAN_clustering
:library(datascience.eda) library(palmerpenguins) # you can call each clustering algorithm separately explore_KMeans_clustering(penguins, centers = seq(3, 5)) explore_DBSCAN_clustering(penguins, eps = c(1), minPts = c(5)) # OR you can just call explore_clustering(penguins) to apply both KMeans and DBSCAN at once
explore_text_columns
:library(sacred) results <- explore_text_columns(apocrypha)
explore_numeric_columns
:results <- explore_numeric_columns(penguins)
explore_categorical_columns
:library(dplyr) library(MASS) df <- data.frame(lapply(survey[, c('Sex','Clap')], as.character), stringsAsFactors=FALSE) %>% tibble() results <- explore_categorical_columns(df, c('Sex','Clap')) results[[1]] %>% knitr::kable() results[[2]][[1]] results[[2]][[2]]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.