README.md

xplrrr

Release codecov

Overview

xplrrr is an R package to make exploratory data analysis (EDA) simple and seamless. EDA is a crucial phase of the data science workflow as it allows us get a fist glimpse of the data. It is important to identify statistical characteristics of the data so that researchers can properly set up the rest of the analysis. This package will provide the tools required to conduct a thorough EDA.

Installation:

Once the package is approved and released to CRAN, you will be able to install it like this: CRAN with:

install.packages("xplrrr")

For now, install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("UBC-MDS/xplrrr")

Functions:

Usage:

This is a basic example which shows you how to solve a common problem:

library(xplrrr)

explore_summary(airquality)
#>         min. 1st Qu. median 3rd Qu.  max.       mean         var
#> Ozone    1.0   18.00   31.5   63.25 168.0  42.129310 1088.200525
#> Solar.R  7.0  115.75  205.0  258.75 334.0 185.931507 8110.519414
#> Wind     1.7    7.40    9.7   11.50  20.7   9.957516   12.411539
#> Temp    56.0   72.00   79.0   85.00  97.0  77.882353   89.591331
#> Month    5.0    6.00    7.0    8.00   9.0   6.993464    2.006536
#> Day      1.0    8.00   16.0   23.00  31.0  15.803922   78.579721

explore_outliers(airquality)
#>         outlier_count
#> Ozone               6
#> Solar.R             0
#> Wind                5
#> Temp                3
#> Month               0
#> Day                 0

missing <- explore_missing(airquality, type = "location")
head(missing)
#>    Ozone Solar.R Wind Temp Month Day   Index
#> 5     NA      NA 14.3   56     5   5       5
#> 6     28      NA 14.9   66     5   6       6
#> 10    NA     194  8.6   69     5  10      10
#> 11     7      NA  6.9   74     5  11      11
#> 25    NA      66 16.6   57     5  25      25
#> 26    NA     266 14.9   58     5  26      26

explore_missing(airquality, type = "count")
#>         Number.of.missing.values Proportion.of.missing.data
#> Ozone                         37                 0.24183007
#> Solar.R                        7                 0.04575163
#> Wind                           0                 0.00000000
#> Temp                           0                 0.00000000
#> Month                          0                 0.00000000
#> Day                            0                 0.00000000

explore_feature_map(iris)

R Ecosystem

This R package is built using the tidyverse ecosystem that will help first time data science users more easily get started with their data projects. A similar package, DataExplorer is another EDA tool available. There are not many EDA packages that exist because the tidyverse ecosystem allows full control of data wrangling and visualization, however users who are not experts with these packages will find xplrrr very useful.

Dependencies

Documentation

Please find up-to-date official documentation at https://ubc-mds.github.io/xplrrr

Contributions

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. See CONTRIBUTING.md for further details.

Contributors

Name | Github ID ------- | ------- Braden Tam | bradentam Furqan Khan | fkhan72 Serhiy Pokrovskyy | pokrovskyy Yu Fang | lori94

For the complete list of project contributors, see CONTRIBUTORS.md



UBC-MDS/xplrrr documentation built on April 2, 2020, 4 a.m.