knitr::opts_chunk$set(warning = FALSE, message = FALSE)
# Sets up output folding
hooks = knitr::knit_hooks$get()
hook_foldable = function(type) {
  force(type)
  function(x, options) {
    res = hooks[[type]](x, options)

    if (isFALSE(options[[paste0("fold.", type)]])) return(res)

    paste0(
      "<details><summary>", type, "</summary>\n\n",
      res,
      "\n\n</details>"
    )
  }
}
knitr::knit_hooks$set(
  output = hook_foldable("output"),
  plot = hook_foldable("plot")
)
data.table::setDTthreads(2)

Model-Assisted (MA) module overview

FIESTA's Model-Assisted (MA) module calculates population estimates and their sampling errors by taking advantage of available model-assisted survey estimators from the mase R package (McConville, et al. 2018). These estimators can use a variety of auxiliary data to build models and predict over a response variable of interest, while using a bias-correction term so that the bias of the model does not depend on model misspecification.

Functions in FIESTA used for fitting model-assisted estimators include the modMAarea function for area estimates and modMAtree for tree estimates. The modMApop function is used to get population data needed for model-assisted estimation. Below is a description and table of contents for the sections related to these functions:

FUNCTION | DESCRIPTION -------------- | --------------------------------------------------------------- modMApop | Creates population data for model-assisted estimation. modMAarea | Produces area level estimates through model-assisted estimation. modMAtree | Produces tree level estimates through model-assisted estimation.

Objective of tutorial

The main objective of this tutorial is to demonstrate how to use FIESTA for generating estimates using estimators from mase. The model-assisted estimators can be used with FIA's standard state-level population data (i.e, Evaluation) from the FIA database (FIADB) and also population data from a custom boundary.

The following examples are for generating estimates and estimated variances using standard FIA Evaluation data from FIA's National database, with custom Estimation unit and Stratification information. The examples use data from three inventory years of field measurements in the state of Wyoming, from FIADB_1.7.2.00, last updated June 20, 2018, downloaded on June 25, 2018 and stored as internal data objects in FIESTA.

Example data - Wyoming (WY), Inventory Years 2011-2012

View MA Example Data

Data Frame | Description -----------| -------------------------------------------------------------------------------- WYplt | WY plot-level data WYcond | WY condition-level data WYtree | WY tree-level data

External data | Description -------------------------| ------------------------------------------------------------------ WYbighorn_adminbnd.shp | Polygon shapefile of WY Bighorn National Forest Administrative boundary WYbighorn_districtbnd.shp| Polygon shapefile of WY Bighorn National Forest District boundaries WYbighorn_forest_nonforest_250m.tif| GeoTIFF raster of predicted forest/nonforest (1/0) for stratification WYbighorn_dem_250m.img | Erdas Imagine raster of elevation change, in meters

*USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.AdministrativeForest (http://data.fs.usda.gov/geodata/edw). Description: An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.

**USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.RangerDistrict (http://data.fs.usda.gov/geodata/edw). Description: A depiction of the boundary that encompasses a Ranger District.

***Based on MODIS-based classified map resampled from 250m to 500m resolution and reclassified from 3 to 2 classes: 1:forest; 2:nonforest. Projected in Albers Conical Equal Area, Datum NAD27 (Ruefenacht et al. 2008). Clipped to extent of WYbighorn_adminbnd.shp.

****USGS National Elevation Dataset (NED), resampled from 30m resolution to 250m. Projected in Albers Conical Equal Area, Datum NAD27 (U.S. Geological Survey 2017). Clipped to boundary of WYbighorn_adminbnd.shp.

Set up

First, you'll need to load the FIESTA library:

library(FIESTA)

Next, you'll need to set up an "outfolder". This is just a file path to a folder where you'd like FIESTA to send your data output. For this vignette, we have set our outfolder file path as a temporary directory.

outfolder <- tempdir()

Get data for examples

View Getting Data

Now that we've loaded FIESTA and setup our outfolder, we can retrieve the data needed to run the examples. First, we point to some external data and predictor layers stored in FIESTA and derive new predictor layers using the terra package.

# File names for external spatial data
WYbhfn <- system.file("extdata", "sp_data/WYbighorn_adminbnd.shp",
                      package = "FIESTA")

WYbhdistfn <- system.file("extdata", "sp_data/WYbighorn_districtbnd.shp",
                          package = "FIESTA")

## predictor variables
fornffn <- system.file("extdata", "sp_data/WYbighorn_forest_nonforest_250m.tif",
                       package = "FIESTA")

demfn <- system.file("extdata", "sp_data/WYbighorn_dem_250m.img",
                     package = "FIESTA")

# Derive new predictor layers from dem
library(terra)

dem <- rast(demfn)
slpfn <- paste0(outfolder, "/WYbh_slp.img")
slp <- terra::terrain(dem,
                      v = "slope",
                      unit = "degrees",
                      filename = slpfn, 
                      overwrite = TRUE,
                      NAflag = -99999.0)

aspfn <- paste0(outfolder, "/WYbh_asp.img")
asp <- terra::terrain(dem,
                      v = "aspect",
                      unit = "degrees", 
                      filename = aspfn,
                      overwrite = TRUE,
                      NAflag = -99999.0)

Next, we can get our FIA plot data and set up our auxiliary data. We can get our FIA plot data with the spMakeSpatialPoints function from FIESTA.

WYspplt <- spMakeSpatialPoints(xyplt = WYplt,
                               xy.uniqueid = "CN",
                               xvar = "LON_PUBLIC",
                               yvar = "LAT_PUBLIC",
                               xy.crs = 4269)

rastlst.cont <- c(demfn, slpfn, aspfn)
rastlst.cont.name <- c("dem", "slp", "asp")
rastlst.cat <- fornffn
rastlst.cat.name <- "fornf"

Next, we must prepare auxiliary data for model-assisted estimation. We can do this with the spGetAuxiliary function from FIESTA. See the sp vignette for further information on this function.

modeldat <- spGetAuxiliary(xyplt = WYspplt,
                           uniqueid = "CN",
                           unit_layer = WYbhfn,
                           unitvar = NULL,
                           rastlst.cont = rastlst.cont,
                           rastlst.cont.name = rastlst.cont.name,
                           rastlst.cat = rastlst.cat,
                           rastlst.cat.name = rastlst.cat.name,
                           rastlst.cont.stat = "mean",
                           asptransform = TRUE,
                           rast.asp = aspfn,
                           keepNA = FALSE,
                           showext = FALSE,
                           savedata = FALSE)
str(modeldat, max.level = 1)

Examples

modMApop

Example 1: Creating our population dataset with modMApop

View Example

We can create our population data for model-assisted estimation. To do so, we use the modMApop function in FIESTA. We must assign our population tables with the popTabs argument (and unique identifiers for these tables with the popTabIDs argument if they are not the default). Because we used spGetAuxiliary to create our model data we can simply pass the object returned by that function into the auxdat argument in modMApop. This is a shortcut that allows you to avoid manually specifying all of the necessary tables as function arguments in modMApop.

MApopdat <- modMApop(popTabs = popTables(tree = WYtree, 
                                         cond = WYcond, 
                                         plt = WYplt),
                     auxdat = modeldat)

Note that the modMApop function returns a list with lots of information and data for us to use. For a quick look at what this list includes we can use the str function:

str(MApopdat, max.level = 1)

Now that we've created our population data set, we can move on to estimation.

modMAarea

Example 2: Area of forest land, Wyoming, 2011-2013

View Example

In this example, we look at estimating the area of forest land in Wyoming from 2011 to 2013 with the generalized regression estimator (MAmethod = "greg"). We can specify a set of auxiliary variables that we want to use in the model using the prednames argument.

area1 <- modMAarea(MApopdat = MApopdat,             # pop - population calculations for WY
                   MAmethod = "greg",               # est - model-assisted method
                   prednames = c("dem", "fornf"),   # est - predictors to use in model
                   landarea = "FOREST")             # est - forest land filter

We can look at the structure of this output with str and the estimates below. Note that again FIESTA outputs a list.

str(area1, max.level = 2)

area1$est

Example 3: Area of forest land, Wyoming, 2011-2013, using the Elastic Net for variable selection

View Example

Here, we fit the same model as the above example, but we don't specify predictors and instead include modelselect = TRUE which internally uses an elastic net model for variable selection.

area2 <- modMAarea(MApopdat = MApopdat,          # pop - population calculations for WY
                   MAmethod = "greg",
                   modelselect = TRUE,           # est - model-assisted method
                   landarea = "FOREST")          # est - forest land filter

We can again see that the structure of the list is very similar to that in the above example:

str(area2, max.level = 2)

However now the raw list has an item called predselectlst which stores information on the predictors that were selected.

area2$raw$predselectlst$totest

And finally we can view the actual estimate:

area2$est

Example 4: Area by forest type on forest land, Wyoming, 2011-2013

View Example

In this example, we look at adding rows to the output and include returntitle = TRUE to return title information. Note that when we do not explicitly supply prednames and do not set modelselect to TRUE, FIESTA defaults to using all of the available predictors.

area3 <- modMAarea(MApopdat = MApopdat,          # pop - population calculations for WY, post-stratification
                   MAmethod = "greg",            # est - model-assisted method
                   landarea = "FOREST",          # est - forest land filter
                   rowvar = "FORTYPCD",          # est - row domain
                   returntitle = TRUE)           # out - return title information

Again, we can look at the contents of the output list. The output now includes titlelst, a list of associated titles.

str(area3, max.level = 1)

And the estimates:

area3$est

Along with raw data and titles:

raw3 <- area3$raw      # extract raw data list object from output
names(raw3)
head(raw3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)

# Titles (list object) for estimate
titlelst3 <- area3$titlelst
names(titlelst3)
titlelst3

Example 5: Area by forest type and stand-size class on forest land, Wyoming, 2011-2013

View Example

In this example, we look at adding rows and columns to output, including FIA names. We also output estimates and percent standard error in the same cell with the allin1 argument in table_options and save data to an outfolder with the outfolder argument in savedata_options.

area4 <- modMAarea(MApopdat = MApopdat,                 # pop - population calculations for WY, post-stratification
                   MAmethod = "greg",                   # est - model-assisted method
                   landarea = "FOREST",                 # est - forest land filter
                   rowvar = "FORTYPCD",                 # est - row domain
                   colvar = "STDSZCD",                  # est - column domain
                   savedata = TRUE,                     # out - save data to outfolder
                   returntitle = TRUE,                  # out - return title information
                   table_opts = table_options(
                     row.FIAname = TRUE,                # table - row domain names
                     col.FIAname = TRUE,                # table - column domain names
                     allin1 = TRUE                      # table - return output with est(pse)
                   ),
                   savedata_opts = savedata_options(
                     outfolder = outfolder,             # save - outfolder for saving data
                     outfn.pre = "WY"                   # save - prefix for output files
                   ))

We can again look at the output list, estimates, raw data, and titles:

# Look at output list
names(area4)

# Estimate and percent sampling error of estimate
head(area4$est)


# Raw data (list object) for estimate
raw4 <- area4$raw      # extract raw data list object from output
names(raw4)
head(raw4$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT)


# Titles (list object) for estimate
titlelst4 <- area4$titlelst
names(titlelst4)
titlelst4


# List output files in outfolder
list.files(outfolder, pattern = "WY_area")
list.files(paste0(outfolder, "/rawdata"), pattern = "WY_area")

modMAtree

We now transition to from generating estimates of area to estimates of tree attributes using the modMAtree function. This requires that we set our estimate variable and filter. We set estvar to "VOLCFNET" for net cubic foot volume, and filter with estvar.filter set to "STATUSCD == 1" so we only consider live trees in our estimation.

estvar <- "VOLCFNET"
live_trees <- "STATUSCD == 1"

Example 6: Net cubic-foot volume of live trees, Wyoming, 2011-2013

View Example

tree1 <- modMAtree(MApopdat = MApopdat,            # pop - population calculations
                   MAmethod = "greg",              # est - model-assisted method
                   landarea = "FOREST",            # est - forest land filter
                   prednames = c("dem", "fornf"),  # est - predictors to use in model
                   estvar = estvar,                # est - net cubic-foot volume
                   estvar.filter = live_trees,     # est - live trees only
                   returntitle = TRUE)             # out - return title information

tree1$est

Example 7: Net cubic-foot volume of live trees, Wyoming, 2011-2013, using the Elastic Net for variable selection

View Example

Here, we fit the same model as the above example, but rather than using "greg" are our model-assisted method, we can use "gregEN" where the EN stands for "elastic net". The elastic net performs variable selection for us, grabbing predictors it finds to be most useful in the model.

tree2 <- modMAtree(MApopdat = MApopdat,            # pop - population calculations
                   MAmethod = "greg",              # est - model-assisted method
                   modelselect = TRUE,             # est - perform variable selection internally
                   landarea = "FOREST",            # est - forest land filter
                   estvar = estvar,                # est - net cubic-foot volume
                   estvar.filter = live_trees,     # est - live trees only
                   returntitle = TRUE)             # out - return title information

We can again see that the structure of the list is very similar to that in the above example:

str(tree2, max.level = 2)

However now the raw list has an item call predselectlst. We can look at this item now:

tree2$raw$predselectlst

And finally, we can look at the estimate

tree2$est

Example 8: Net cubic-foot volume of live trees by forest type, Wyoming, 2011-2013

View Example

This example adds rows to the output for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type, Wyoming, 2011-2013. We also choose to return titles with returntitle = TRUE.

tree3 <- modMAtree(MApopdat = MApopdat,               # pop - population calculations
                   MAmethod = "greg",                 # est - model-assisted method
                   prednames = c("dem", "fornf"),     # est - predictors to use in model  
                   landarea = "FOREST",               # est - forest land filter
                   estvar = "VOLCFNET",               # est - net cubic-foot volume
                   estvar.filter = "STATUSCD == 1",   # est - live trees only
                   rowvar = "FORTYPCD",               # est - row domain 
                   returntitle = TRUE)                # out - return title information

Again, we investigate the output:

# Look at output list
names(tree3)

# Estimate and percent sampling error of estimate
tree3$est

We can also create a simple barplot from the output:

datBarplot(raw3$unit_rowest, 
           xvar = titlelst3$title.rowvar, 
           yvar = "est")

And a fancier barplot:

datBarplot(raw3$unit_rowest, 
           xvar = titlelst3$title.rowvar, 
           yvar = "est",
           errbars = TRUE, 
           sevar = "est.se", 
           main = FIESTAutils::wraptitle(titlelst3$title.row, 75),
           ylabel = titlelst3$title.yvar, 
           divideby = "million")

Example 9: Net cubic-foot volume of live trees by forest type and stand-size class, Wyoming, 2011-2013

View Example

This examples adds rows and columns to the output, including FIA names, for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type and stand-size class, Wyoming, 2011-2013. We also use the *_options functions to return output with estimates (est) and percent standard error (pse) in same cell - est(pse) with allin1 = TRUE and save data to an outfolder with savedata = TRUE and outfolder = outfolder.

tree4 <- modMAtree(MApopdat = MApopdat,                # pop - population calculations
                   MAmethod = "greg",                  # est - model-assisted method
                   landarea = "FOREST",                # est - forest land filter
                   prednames = c("dem", "slp"),        # est - predictors to use in model
                   estvar = "VOLCFNET",                # est - net cubic-foot volume
                   estvar.filter = "STATUSCD  == 1",   # est - live trees only
                   rowvar = "FORTYPCD",                # est - row domain
                   colvar = "STDSZCD",                 # est - column domain
                   returntitle = TRUE,                 # out - return title information
                   savedata = TRUE,                    # out - save data to outfolder
                   table_opts = table_options(
                     row.FIAname = TRUE,               # est - row domain names
                     col.FIAname = TRUE,               # est - column domain names
                     allin1 = TRUE                     # out - return output with est(pse)
                   ),
                   savedata_opts = savedata_options(
                     outfolder = outfolder,            # out - outfolder for saving data
                     outfn.pre = "WY"                  # out - prefix for output files
                   ))

Again, we investigate the output of the returned list:

# Look at output list from modGBarea()
names(tree4)

# Estimate and percent sampling error of estimate
tree4$est

## Raw data (list object) for estimate
raw4 <- tree4$raw      # extract raw data list object from output
names(raw4)
head(raw4$unit_totest)   # estimates by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_rowest)   # estimates by row, by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_colest)   # estimates by column, by estimation unit (i.e., ESTN_UNIT)
head(raw4$unit_grpest)   # estimates by row and column, by estimation unit (i.e., ESTN_UNIT)

# Titles (list object) for estimate
titlelst4 <- tree4$titlelst
names(titlelst4)
titlelst4

# List output files in outfolder
list.files(outfolder, pattern = "WY_tree")
list.files(paste0(outfolder, "/rawdata"), pattern = "WY_tree")

Example 10: Number of live trees (plus seedlings) by species, Wyoming, 2011-2013

View Example

We can also add seedlings.

Note: seedling data are only available for number of trees (estvar = TPA_UNADJ).

Note: must include seedling data in population data calculations.

MApopdat_seed <- modMApop(popTabs = popTables(tree = WYtree,
                                              cond = WYcond,
                                              seed = WYseed),
                          pltassgn = WYpltassgn,
                          auxdat = modeldat)
tree5 <- modMAtree(MApopdat = MApopdat_seed,              # pop - population calculations
                   MAmethod = "greg",                     # est - model-assisted method
                   prednames = c("dem", "slp", "fornf"),
                   estseed = "add",                       # est - add seedling data
                   landarea = "FOREST",                   # est - forest land filter
                   estvar = "TPA_UNADJ",                  # est - number of trees per acre 
                   estvar.filter = "STATUSCD == 1",       # est - live trees only
                   rowvar = "SPCD",                       # est - row domain
                   returntitle = TRUE,                    # out - return title information
                   table_opts = table_options(
                     row.FIAname = TRUE,                  # est - row domain names
                     allin1 = FALSE                       # out - return output with est and pse
                   ))

And again we can look at our outputs and compare estimates:

# Look at output list
names(tree5)

# Estimate and percent sampling error of estimate
tree5$est



USDAForestService/FIESTA documentation built on April 5, 2025, 4:13 a.m.