knitr::opts_chunk$set(warning = FALSE, message = FALSE)
# Sets up output folding hooks = knitr::knit_hooks$get() hook_foldable = function(type) { force(type) function(x, options) { res = hooks[[type]](x, options) if (isFALSE(options[[paste0("fold.", type)]])) return(res) paste0( "<details><summary>", type, "</summary>\n\n", res, "\n\n</details>" ) } } knitr::knit_hooks$set( output = hook_foldable("output"), plot = hook_foldable("plot") )
data.table::setDTthreads(2)
FIESTA
's Model-Assisted (MA) module calculates population estimates and their sampling errors by taking advantage of available model-assisted survey estimators from the mase
R package (McConville, et al. 2018). These estimators can use a variety of auxiliary data to build models and predict over a response variable of interest, while using a bias-correction term so that the bias of the model does not depend on model misspecification.
Functions in FIESTA
used for fitting model-assisted estimators include the modMAarea
function for area estimates and modMAtree
for tree estimates. The modMApop
function is used to get population data needed for model-assisted estimation. Below is a description and table of contents for the sections related to these functions:
FUNCTION | DESCRIPTION -------------- | --------------------------------------------------------------- modMApop | Creates population data for model-assisted estimation. modMAarea | Produces area level estimates through model-assisted estimation. modMAtree | Produces tree level estimates through model-assisted estimation.
The main objective of this tutorial is to demonstrate how to use FIESTA
for generating estimates using estimators from mase
. The model-assisted estimators can be used with FIA's standard state-level population data (i.e, Evaluation) from the FIA database (FIADB) and also population data from a custom boundary.
The following examples are for generating estimates and estimated variances using standard FIA Evaluation data from FIA's National database, with custom Estimation unit and Stratification information. The examples use data from three inventory years of field measurements in the state of Wyoming, from FIADB_1.7.2.00, last updated June 20, 2018, downloaded on June 25, 2018 and stored as internal data objects in FIESTA
.
View MA Example Data
Data Frame | Description -----------| -------------------------------------------------------------------------------- WYplt | WY plot-level data WYcond | WY condition-level data WYtree | WY tree-level data
External data | Description -------------------------| ------------------------------------------------------------------ WYbighorn_adminbnd.shp | Polygon shapefile of WY Bighorn National Forest Administrative boundary WYbighorn_districtbnd.shp| Polygon shapefile of WY Bighorn National Forest District boundaries WYbighorn_forest_nonforest_250m.tif| GeoTIFF raster of predicted forest/nonforest (1/0) for stratification WYbighorn_dem_250m.img | Erdas Imagine raster of elevation change, in meters
*USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.AdministrativeForest (http://data.fs.usda.gov/geodata/edw). Description: An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.
**USDA Forest Service, Automated Lands Program (ALP). 2018. S_USA.RangerDistrict (http://data.fs.usda.gov/geodata/edw). Description: A depiction of the boundary that encompasses a Ranger District.
***Based on MODIS-based classified map resampled from 250m to 500m resolution and reclassified from 3 to 2 classes: 1:forest; 2:nonforest. Projected in Albers Conical Equal Area, Datum NAD27 (Ruefenacht et al. 2008). Clipped to extent of WYbighorn_adminbnd.shp.
****USGS National Elevation Dataset (NED), resampled from 30m resolution to 250m. Projected in Albers Conical Equal Area, Datum NAD27 (U.S. Geological Survey 2017). Clipped to boundary of WYbighorn_adminbnd.shp.
First, you'll need to load the FIESTA
library:
library(FIESTA)
Next, you'll need to set up an "outfolder". This is just a file path to a folder where you'd like FIESTA
to send your data output. For this vignette, we have set our outfolder file path as a temporary directory.
outfolder <- tempdir()
View Getting Data
Now that we've loaded FIESTA
and setup our outfolder, we can retrieve the data needed to run the examples. First, we point to some external data and predictor layers stored in FIESTA
and derive new predictor layers using the terra
package.
# File names for external spatial data WYbhfn <- system.file("extdata", "sp_data/WYbighorn_adminbnd.shp", package = "FIESTA") WYbhdistfn <- system.file("extdata", "sp_data/WYbighorn_districtbnd.shp", package = "FIESTA") ## predictor variables fornffn <- system.file("extdata", "sp_data/WYbighorn_forest_nonforest_250m.tif", package = "FIESTA") demfn <- system.file("extdata", "sp_data/WYbighorn_dem_250m.img", package = "FIESTA") # Derive new predictor layers from dem library(terra) dem <- rast(demfn) slpfn <- paste0(outfolder, "/WYbh_slp.img") slp <- terra::terrain(dem, v = "slope", unit = "degrees", filename = slpfn, overwrite = TRUE, NAflag = -99999.0) aspfn <- paste0(outfolder, "/WYbh_asp.img") asp <- terra::terrain(dem, v = "aspect", unit = "degrees", filename = aspfn, overwrite = TRUE, NAflag = -99999.0)
Next, we can get our FIA plot data and set up our auxiliary data. We can get our FIA plot data with the spMakeSpatialPoints
function from FIESTA
.
WYspplt <- spMakeSpatialPoints(xyplt = WYplt, xy.uniqueid = "CN", xvar = "LON_PUBLIC", yvar = "LAT_PUBLIC", xy.crs = 4269) rastlst.cont <- c(demfn, slpfn, aspfn) rastlst.cont.name <- c("dem", "slp", "asp") rastlst.cat <- fornffn rastlst.cat.name <- "fornf"
Next, we must prepare auxiliary data for model-assisted estimation. We can do this with the spGetAuxiliary
function from FIESTA
. See the sp
vignette for further information on this function.
modeldat <- spGetAuxiliary(xyplt = WYspplt, uniqueid = "CN", unit_layer = WYbhfn, unitvar = NULL, rastlst.cont = rastlst.cont, rastlst.cont.name = rastlst.cont.name, rastlst.cat = rastlst.cat, rastlst.cat.name = rastlst.cat.name, rastlst.cont.stat = "mean", asptransform = TRUE, rast.asp = aspfn, keepNA = FALSE, showext = FALSE, savedata = FALSE)
str(modeldat, max.level = 1)
modMApop
modMApop
View Example
We can create our population data for model-assisted estimation. To do so, we use the modMApop
function in FIESTA
. We must assign our population tables with the popTabs
argument (and unique identifiers for these tables with the popTabIDs
argument if they are not the default). Because we used spGetAuxiliary
to create our model data we can simply pass the object returned by that function into the auxdat
argument in modMApop
. This is a shortcut that allows you to avoid manually specifying all of the necessary tables as function arguments in modMApop
.
MApopdat <- modMApop(popTabs = popTables(tree = WYtree, cond = WYcond, plt = WYplt), auxdat = modeldat)
Note that the modMApop
function returns a list with lots of information and data for us to use. For a quick look at what this list includes we can use the str
function:
str(MApopdat, max.level = 1)
Now that we've created our population data set, we can move on to estimation.
modMAarea
View Example
In this example, we look at estimating the area of forest land in Wyoming from 2011 to 2013 with the generalized regression estimator (MAmethod = "greg"
). We can specify a set of auxiliary variables that we want to use in the model using the prednames
argument.
area1 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY MAmethod = "greg", # est - model-assisted method prednames = c("dem", "fornf"), # est - predictors to use in model landarea = "FOREST") # est - forest land filter
We can look at the structure of this output with str
and the estimates below. Note that again FIESTA
outputs a list.
str(area1, max.level = 2) area1$est
View Example
Here, we fit the same model as the above example, but we don't specify predictors and instead include modelselect = TRUE
which internally uses an elastic net model for variable selection.
area2 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY MAmethod = "greg", modelselect = TRUE, # est - model-assisted method landarea = "FOREST") # est - forest land filter
We can again see that the structure of the list is very similar to that in the above example:
str(area2, max.level = 2)
However now the raw
list has an item called predselectlst
which stores information on the predictors that were selected.
area2$raw$predselectlst$totest
And finally we can view the actual estimate:
area2$est
View Example
In this example, we look at adding rows to the output and include returntitle = TRUE
to return title information. Note that when we do not explicitly supply prednames
and do not set modelselect
to TRUE, FIESTA defaults to using all of the available predictors.
area3 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY, post-stratification MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter rowvar = "FORTYPCD", # est - row domain returntitle = TRUE) # out - return title information
Again, we can look at the contents of the output list. The output now includes titlelst, a list of associated titles.
str(area3, max.level = 1)
And the estimates:
area3$est
Along with raw data and titles:
raw3 <- area3$raw # extract raw data list object from output names(raw3) head(raw3$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw3$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst3 <- area3$titlelst names(titlelst3) titlelst3
View Example
In this example, we look at adding rows and columns to output, including FIA names. We also output estimates and percent standard error in the same cell with the allin1
argument in table_options
and save data to an outfolder with the outfolder
argument in savedata_options
.
area4 <- modMAarea(MApopdat = MApopdat, # pop - population calculations for WY, post-stratification MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter rowvar = "FORTYPCD", # est - row domain colvar = "STDSZCD", # est - column domain savedata = TRUE, # out - save data to outfolder returntitle = TRUE, # out - return title information table_opts = table_options( row.FIAname = TRUE, # table - row domain names col.FIAname = TRUE, # table - column domain names allin1 = TRUE # table - return output with est(pse) ), savedata_opts = savedata_options( outfolder = outfolder, # save - outfolder for saving data outfn.pre = "WY" # save - prefix for output files ))
We can again look at the output list, estimates, raw data, and titles:
# Look at output list names(area4) # Estimate and percent sampling error of estimate head(area4$est) # Raw data (list object) for estimate raw4 <- area4$raw # extract raw data list object from output names(raw4) head(raw4$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst4 <- area4$titlelst names(titlelst4) titlelst4 # List output files in outfolder list.files(outfolder, pattern = "WY_area") list.files(paste0(outfolder, "/rawdata"), pattern = "WY_area")
modMAtree
We now transition to from generating estimates of area to estimates of tree attributes using the modMAtree
function. This requires that we set our estimate variable and filter. We set estvar
to "VOLCFNET"
for net cubic foot volume, and filter with estvar.filter
set to "STATUSCD == 1"
so we only consider live trees in our estimation.
estvar <- "VOLCFNET" live_trees <- "STATUSCD == 1"
View Example
tree1 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter prednames = c("dem", "fornf"), # est - predictors to use in model estvar = estvar, # est - net cubic-foot volume estvar.filter = live_trees, # est - live trees only returntitle = TRUE) # out - return title information tree1$est
View Example
Here, we fit the same model as the above example, but rather than using "greg"
are our model-assisted method, we can use "gregEN"
where the EN stands for "elastic net". The elastic net performs variable selection for us, grabbing predictors it finds to be most useful in the model.
tree2 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method modelselect = TRUE, # est - perform variable selection internally landarea = "FOREST", # est - forest land filter estvar = estvar, # est - net cubic-foot volume estvar.filter = live_trees, # est - live trees only returntitle = TRUE) # out - return title information
We can again see that the structure of the list is very similar to that in the above example:
str(tree2, max.level = 2)
However now the raw
list has an item call predselectlst
. We can look at this item now:
tree2$raw$predselectlst
And finally, we can look at the estimate
tree2$est
View Example
This example adds rows to the output for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type, Wyoming, 2011-2013. We also choose to return titles with returntitle = TRUE
.
tree3 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method prednames = c("dem", "fornf"), # est - predictors to use in model landarea = "FOREST", # est - forest land filter estvar = "VOLCFNET", # est - net cubic-foot volume estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "FORTYPCD", # est - row domain returntitle = TRUE) # out - return title information
Again, we investigate the output:
# Look at output list names(tree3) # Estimate and percent sampling error of estimate tree3$est
We can also create a simple barplot from the output:
datBarplot(raw3$unit_rowest, xvar = titlelst3$title.rowvar, yvar = "est")
And a fancier barplot:
datBarplot(raw3$unit_rowest, xvar = titlelst3$title.rowvar, yvar = "est", errbars = TRUE, sevar = "est.se", main = FIESTAutils::wraptitle(titlelst3$title.row, 75), ylabel = titlelst3$title.yvar, divideby = "million")
View Example
This examples adds rows and columns to the output, including FIA names, for net cubic-foot volume of live trees (at least 5 inches diameter) by forest type and stand-size class, Wyoming, 2011-2013. We also use the *_options
functions to return output with estimates (est) and percent standard error (pse) in same cell - est(pse) with allin1 = TRUE
and save data to an outfolder with savedata = TRUE
and outfolder = outfolder
.
tree4 <- modMAtree(MApopdat = MApopdat, # pop - population calculations MAmethod = "greg", # est - model-assisted method landarea = "FOREST", # est - forest land filter prednames = c("dem", "slp"), # est - predictors to use in model estvar = "VOLCFNET", # est - net cubic-foot volume estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "FORTYPCD", # est - row domain colvar = "STDSZCD", # est - column domain returntitle = TRUE, # out - return title information savedata = TRUE, # out - save data to outfolder table_opts = table_options( row.FIAname = TRUE, # est - row domain names col.FIAname = TRUE, # est - column domain names allin1 = TRUE # out - return output with est(pse) ), savedata_opts = savedata_options( outfolder = outfolder, # out - outfolder for saving data outfn.pre = "WY" # out - prefix for output files ))
Again, we investigate the output of the returned list:
# Look at output list from modGBarea() names(tree4) # Estimate and percent sampling error of estimate tree4$est ## Raw data (list object) for estimate raw4 <- tree4$raw # extract raw data list object from output names(raw4) head(raw4$unit_totest) # estimates by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_rowest) # estimates by row, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_colest) # estimates by column, by estimation unit (i.e., ESTN_UNIT) head(raw4$unit_grpest) # estimates by row and column, by estimation unit (i.e., ESTN_UNIT) # Titles (list object) for estimate titlelst4 <- tree4$titlelst names(titlelst4) titlelst4 # List output files in outfolder list.files(outfolder, pattern = "WY_tree") list.files(paste0(outfolder, "/rawdata"), pattern = "WY_tree")
View Example
We can also add seedlings.
Note: seedling data are only available for number of trees (estvar = TPA_UNADJ).
Note: must include seedling data in population data calculations.
MApopdat_seed <- modMApop(popTabs = popTables(tree = WYtree, cond = WYcond, seed = WYseed), pltassgn = WYpltassgn, auxdat = modeldat)
tree5 <- modMAtree(MApopdat = MApopdat_seed, # pop - population calculations MAmethod = "greg", # est - model-assisted method prednames = c("dem", "slp", "fornf"), estseed = "add", # est - add seedling data landarea = "FOREST", # est - forest land filter estvar = "TPA_UNADJ", # est - number of trees per acre estvar.filter = "STATUSCD == 1", # est - live trees only rowvar = "SPCD", # est - row domain returntitle = TRUE, # out - return title information table_opts = table_options( row.FIAname = TRUE, # est - row domain names allin1 = FALSE # out - return output with est and pse ))
And again we can look at our outputs and compare estimates:
# Look at output list names(tree5) # Estimate and percent sampling error of estimate tree5$est
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.