#' Data_Nutrients_UT
#'
#' A dataframe containing Ammonia, Nitrate, and Nitrogen data from Utah:
#'
#' Data_Nutrients_UT <- TADA_DataRetrieval(statecode = "UT",
#' characteristicName = c("Ammonia", "Nitrate", "Nitrogen"),
#' startDate = "2020-10-01",
#' endDate = "2022-09-30",
#' applyautoclean = TRUE)
#'
#' @docType data
#' @keywords dataframe
#' @name Data_Nutrients_UT
#' @usage data(Data_Nutrients_UT)
#' @format A dataframe with 14592 rows and 152 variables
NULL
#' Data_6Tribes_5y
#'
#' Original pull:
#' Data_6Tribes_5y <- TADA_DataRetrieval(organization = c("REDLAKE_WQX",
#' "SFNOES_WQX",
#' "PUEBLO_POJOAQUE",
#' "FONDULAC_WQX",
#' "PUEBLOOFTESUQUE",
#' "CNENVSER"),
#' startDate = "2018-01-01"
#' endDate = "2023-01-01")
#'
#' This example includes monitoring data collected from Jan 2018 to present
#' by six organizations:
#' 1) Red Lake Band of Chippewa Indians,
#' 2) Sac & Fox Nation,
#' 3) Pueblo of Pojoaque,
#' 4) Minnesota Chippewa Tribe (Fond du Lac Band),
#' 5) Pueblo of Tesuque, and
#' 6) The Chickasaw Nation
#'
#' @docType data
#' @keywords dataframe
#' @name Data_6Tribes_5y
#' @usage data(Data_6Tribes_5y)
#' @format A dataframe with 134050 rows and 149 variables
NULL
#' Data_6Tribes_5y_Harmonized
#'
#' A dataframe containing data from tribal organizations
#' (see ?Data_6Tribes_5y for more information). Data was cleaned using the
#' TADA Module 1 vignette
#' (see: https://usepa.github.io/EPATADA/articles/TADAModule1.html).
#'
#' @docType data
#' @keywords dataframe
#' @name Data_6Tribes_5y_Harmonized
#' @usage data(Data_6Tribes_5y_Harmonized)
#' @format A dataframe with 117124 rows and 166 variables
NULL
#' Data_NCTCShepherdstown_HUC12
#'
#' Original pull:
#' Data_NCTCShepherdstown_HUC12 = TADA_DataRetrieval(
#' startDate = "2020-03-14",
#' endDate = "null",
#' countycode = "null",
#' huc = "02070004",
#' siteid = "null",
#' siteType = "null",
#' characteristicName = "null",
#' characteristicType = "null",
#' sampleMedia = "null",
#' statecode = "null",
#' organization = "null",
#' project = "null",
#' applyautoclean = TRUE
#' )
#'
#' @docType data
#' @keywords dataframe
#' @name Data_NCTCShepherdstown_HUC12
#' @usage data(Data_NCTCShepherdstown_HUC12)
#' @format A dataframe with 39236 rows and 151 variables
NULL
#' Data_R5_TADAPackageDemo
#'
#' Original pull:
#' Data_R5_TADAPackageDemo <- TADA_DataRetrieval(
#' startDate = "2019-05-01",
#' endDate = "2019-05-07",
#' countycode = "null",
#' huc = "null",
#' siteid = "null",
#' siteType = "null",
#' characteristicName = "null",
#' characteristicType = "null",
#' sampleMedia = "null",
#' statecode = c("IL", "IN", "MI", "MN", "OH", "WI"),
#' organization = "null",
#' project = "null",
#' applyautoclean = FALSE
#' )
#'
#' @docType data
#' @keywords dataframe
#' @name Data_R5_TADAPackageDemo
#' @usage data(Data_R5_TADAPackageDemo)
#' @format A dataframe with 6569 rows and 123 variables
NULL
#' Data_HUC8_02070004_Mod1Output
#'
#' See Module 1 Workflow.R script in vignettes folder
#' This is the final data after running a recommended module 1 workflow.
#' It can be used as a starting point for Modules 2 or 3.
#'
#' @docType data
#' @keywords data frame
#' @name Data_HUC8_02070004_Mod1Output
#' @usage data(Data_HUC8_02070004_Mod1Output)
#' @format A data frame with 84 rows and 161 variables
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.