#--------------------------------------------------------------------
# INPUT DATA
#--------------------------------------------------------------------
#====================================================================
# Setup libraries, read input data, and prepare data for analysis.
# This script integrates functions for loading libraries,
# selecting and reading input file, and prepare data for analysis,
# and reading rule table (additivity).
# It returns a dataframe ready to use for diagnostics and plotting.
#====================================================================
mipplot_read_data <- function(filename = NULL, rule_table_filename=NULL,
additivity_test = FALSE, variable_check = FALSE){
# # Install and import libraries.
# mipplot_setup("ggplot2")
# mipplot_setup("data.table")
# mipplot_setup("openxlsx")
# mipplot_setup("stringr")
# mipplot_setup("reshape2")
# mipplot_setup("dplyr")
# Select and read input file.
if(is.null(filename)){
filename <- file.choose()
}
df1 <- data.table::fread(filename, header=TRUE)
# Transform input data into format ready-to-use for diagnostics and plotting.
D1 <- mipplot_indata_prepare(df1)
# Read table with additivity rules.
# R1 <- mipplot_rule_tab(rule_table_filename)
# Execute additivity test.
# if(additivity_test == TRUE){
# T_out <- mipplot_additivity(D1)
# }
# Execute variable submission check.
# if(variable_check == TRUE){
# var_list <- read.csv("../data/Variable_list_ar5_v01.csv", header = TRUE)
# V_out <- mipplot_var_submission(D1, var_list)
# }
return(D1)
}
#TEST
#rule_tab1 <- "../data/ar5_db_rule_table_v02_DSH.csv"
#fname <- "../data/ar5_db_sample05_EMF.csv"
#xD1 <- mipplot_read_data(fname,rule_table_filename=rule_tab1, additivity_test = T, variable_check = T)
#END
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.