dCIR | R Documentation |
Density, distribution function, quantile function, and random generation for the transition probabilities in the Cox-Ingersoll-Ross process given by the stochastic differential equation dX = lambda*(xi-X)*dt + gamma*sqrt(X)*dB (interpreted in the sense of Ito (default) or Stratonovich (optional))
dCIR(x,x0,lambda,xi,gamma,t,Stratonovich=FALSE,log=FALSE)
pCIR(x,x0,lambda,xi,gamma,t,Stratonovich=FALSE,log.p=FALSE,lower.tail=TRUE)
qCIR(p,x0,lambda,xi,gamma,t,Stratonovich=FALSE,log.p=FALSE,lower.tail=TRUE)
rCIR(n,x0,lambda,xi,gamma,t,Stratonovich=FALSE)
x , q |
Target state, assumed >= 0 |
x0 |
Initial state, assumed > 0 |
lambda |
Rate parameter, assumed > 0 |
xi |
Mean parameter, assumed > 0 |
gamma |
Noise intensity parameters, assumed > 0 |
t |
Terminal time, assumed > 0 |
Stratonovich |
Logical, TRUE for Stratonovich, FALSE (default) for Ito |
log , log.p |
Logical, if TRUE, probabilities/densities are given as log(p). Default is FALSE |
lower.tail |
Logical; if TRUE (default) probabilities are P(X<=x); otherise, P(X>x). |
p |
Probability, assumed >= 0 and <= 1. |
dCIR gives the transition probability density, pCIR gives the distribution of the transitio probability, qCIR gives the quantiles, and rCIR samples a random terminal point.
The length of the result is determined by n for rCIR, and is the maximum of the lengths of the numerical arguments for the other functions.
x <- sort(rCIR(100,1,1,1,1,1))
par(mfrow=c(1,2))
plot(x,dCIR(x,1,1,1,1,1),ylab="p.d.f.")
F <- pCIR(x,1,1,1,1,1)
plot(x,F)
lines(qCIR(F,1,1,1,1,1),F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.