EBMMT includs nine approches (i.e., the OMNI, eHC, eBJ, iHC, GHC, GBJ, MinP, Wald and PCFisher tests) for detecting the association between a single SNP and multiple traits based on GWAS summary statistics while accounting for the correlation structure among multiple traits.
Please use the following command in R to install the package:
library(usethis)
library(devtools)
install_github("Vivian-Liu-Wei64/EBMMT")
The EBMMT performs the multiple traits association test based on GWAS summary statistics.
The eHC function is used to calculate the P_values of the eHC test.
The eBJ function is used to calculate the P_values of the eBJ test.
The iHC function is used to calculate the P_values of the iHC test.
The Wald function is used to calculate the P_values of the Wald test.
The PCFisher function is used to calculate the P_values of the PCFisher tests.
The Eigen_ana function is used to calculate the P_values of the eHC, eBJ, iHC, GHC, GBJ, MinP, Wald and PCFisher tests.
Eigen_ana(Z_score, Sigma)
Given Z_score and Sigma, the Eigen_ana function provids the P-values of the eHC, eBJ, iHC, GHC, GBJ, MinP, Wald and PCFisher tests.
library(EBMMT) # load the EBMMT package
# Z_score shold be a vector of test statistics for each factor in the set (i.e. marginal test statistic for each trait).
# Sigma shpuld be a matrix of the correlations between all the test statistics in the set.
#example
library(mvtnorm)
Sigma<-matrix(c(1,-0.08,-0.42,-0.08,1,0.27,-0.42,0.27,1),3,3)
Z_score<- as.vector(rmvnorm(1,mean=c(1.3,1.3,1.3),sigma=Sigma) )
Eigen_ana(Z_score,Sigma)
-----------The p_values of eHC, eBJ, iHC, GHC, GBJ, MinP, Wald and PCFisher tests-----------
OMNI_p eHC_p eBJ_p iHC_p GHC_p GBJ_p MinP_p Wald_p PCFisher_p
[1] 0.027059710 0.013585974 0.024266871 0.023478188 0.045186983 0.066075545 0.036742809 0.008783658 0.009267857
Liu, W., Xu, Y., Wang, A., Huang, T.# and Liu, Z.#, 2021. The Eigen Higher Criticism and Eigen Berk–Jones Tests for Multiple Trait Association Studies Based on GWAS Summary Statistics. Genetic Epidemiology. https://doi.org/10.1002/gepi.22439
Our proposed eigen higher criticism (eHC) has a similar name with the test statistic "eigenHC" in those two papers (Donoho and Jin, 2015; Ke, 2016). Note that eHC is fundamentally different from eigenHC.
Donoho, D. and Jin, J., 2015. Higher criticism for large-scale inference, especially for rare and weak effects. Statistical Science, 30(1), 1-25.
Ke, Z.T., 2016. Detecting rare and weak spikes in large covariance matrices. arXiv preprint arXiv:1609.00883.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.