vselect: Variable selection toolbox for lasso,

View source: R/vselect.R

vselectR Documentation

Variable selection toolbox for lasso,

Description

Variable selection toolbox for lasso,

Usage

vselect(
  X,
  Y,
  alpha = 0.05,
  p_total = 0,
  selmtd = "dlasso",
  precmtd = "sqrtlasso",
  FCD = TRUE
)

Arguments

X, Y:

n x p and 1 x p matrix

alpha:

desired selection significance level

p_total:

total number of variables, used in bonferroni correction

selmtd:

variable selection method: avaiable methods: "dlasso": debiased lasso (default with FCD=True and precmtd="sqrtlasso"); "lasso": lasso with fixed lambda from [Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Shojaie and Michailidis. 2010]; "adalasso": adaptive lasso with fixed lambda from [Shojaie and Michailidis. 2010]; "cvlasso": cross-validated lasso from glmnet; "scallasso": scaled lasso.

FCD:

for debiased lasso, use the FCD procedure [False Discovery Rate Control via Debiased Lasso. Javanmard and Montanari. 2018] or use individual tests to select support.

precmtd:

for debiased lasso, how to compute debiasing matrix "cv": node-wise lasso w/ joint 10 fold cv "sqrtlasso": square-root lasso (no tune, default)

Value

one-hot model selection vector (1 x p) and fitted residuals


WY-Chen/EqVarDAG documentation built on May 10, 2022, 7:08 a.m.