plot_cv | R Documentation |
Create multiple plots of output from the lrren
function, specifically for the internal k-fold cross-validation diagnostics.
plot_cv(input, alpha = 0.05)
input |
An object of class 'list' from the |
alpha |
Numeric. The two-tailed alpha level for the significance threshold (default is 0.05). |
This function produces two plots: 1) area under the receiver operating characteristic curve and 2) precision-recall curve. Each plot shows predictions for the log relative risk surface. The red-colored lines are the average curves.
if (interactive()) {
set.seed(1234) # for reproducibility
# Using the 'bei' and 'bei.extra' data within {spatstat.data}
# Covariate data (centered and scaled)
elev <- spatstat.data::bei.extra[[1]]
grad <- spatstat.data::bei.extra[[2]]
elev$v <- scale(elev)
grad$v <- scale(grad)
elev_raster <- terra::rast(elev)
grad_raster <- terra::rast(grad)
# Presence data
presence <- spatstat.data::bei
spatstat.geom::marks(presence) <- data.frame("presence" = rep(1, presence$n),
"lon" = presence$x,
"lat" = presence$y)
spatstat.geom::marks(presence)$elev <- elev[presence]
spatstat.geom::marks(presence)$grad <- grad[presence]
# (Pseudo-)Absence data
absence <- spatstat.random::rpoispp(0.008, win = elev)
spatstat.geom::marks(absence) <- data.frame("presence" = rep(0, absence$n),
"lon" = absence$x,
"lat" = absence$y)
spatstat.geom::marks(absence)$elev <- elev[absence]
spatstat.geom::marks(absence)$grad <- grad[absence]
# Combine into readable format
obs_locs <- spatstat.geom::superimpose(presence, absence, check = FALSE)
obs_locs <- spatstat.geom::marks(obs_locs)
obs_locs$id <- seq(1, nrow(obs_locs), 1)
obs_locs <- obs_locs[ , c(6, 2, 3, 1, 4, 5)]
# Run lrren
test_lrren <- lrren(obs_locs = obs_locs,
cv = TRUE)
# Run plot_cv
plot_cv(input = test_lrren)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.