lasso.tree: The core function for lasso-tree with meta-analysis

Description Usage Arguments Value

View source: R/func_sol.R

Description

Find the best estimate of parameter beta's, for tuning parameters lambda

Usage

1
2
lasso.tree(G, T, N, y, cen, lambda, inibeta = NULL, trace = TRUE,
  maxiter = 200, eps = 1e-04, w_select = "plainCox", w = NULL)

Arguments

G

label of dataset

T, N

features one of the tumor

y

time to failure

cen

censor indicator

lambda

tuning parameter of the fused group lasso penalty, could be a single value or a vector

inibeta

vector of initial guess of beta's

trace

boolen varable whether to show the process of calculation

maxiter

max number of iteration

eps

tolerance

w_select

the method to select the adaptive weight w, "plainCox" or "preDefine"

w

adaptive weight w

Value

the estimate of lambda in "param" class (see as.param for details)


WangTJ/glidars documentation built on Jan. 20, 2021, 6:32 p.m.