compute_lighting: Computes lighting values from given spectra dataframe

View source: R/lighting_values.R

compute_lightingR Documentation

Computes lighting values from given spectra dataframe

Description

The following lighting values are implemented:

  • E_v: illuminance in lx

  • E^D65_sc,v: S-cone-opic equivalent daylight (D65) illuminance in lx \insertCiteCIE2018blighting

  • E^D65_mc,v: M-cone-opic equivalent daylight (D65) illuminance in lx \insertCiteCIE2018blighting

  • E^D65_lc,v: L-cone-opic equivalent daylight (D65) illuminance in lx \insertCiteCIE2018blighting

  • E^D65_rh,v: rhodopic equivalent daylight (D65) illuminance in lx \insertCiteCIE2018blighting

  • E^D65_mel,v: melanopic equivalent daylight (D65) illuminance in lx \insertCiteCIE2018blighting

  • gamma^D65_sc,v: S-cone-opic daylight (D65) efficacy ratio \insertCiteCIE2018blighting

  • gamma^D65_mc,v: M-cone-opic daylight (D65) efficacy ratio \insertCiteCIE2018blighting

  • gamma^D65_lc,v: L-cone-opic daylight (D65) efficacy ratio \insertCiteCIE2018blighting

  • gamma^D65_rh,v: rhodopic daylight (D65) efficacy ratio \insertCiteCIE2018blighting

  • gamma^D65_mel,v: melanopic daylight (D65) efficacy ratio \insertCiteCIE2018blighting

  • E_v,mel,D65: melanopic daylight equivalent illuminance in lx \insertCiteDIN2015lighting

  • a_mel,v: melanopic factor of luminous radiation \insertCiteDIN2015lighting

  • EML: equivalent melanopic lux \insertCiteIWBI2019lighting

  • R_mel,ratio: melanopic ratio \insertCiteIWBI2019lighting

  • CCT: correlated colour temperature \insertCiteCIE2018blighting

  • R_a: color rendering index \insertCiteCIE1995lighting

  • R_i: 1-14 specific color rendering index \insertCiteCIE1995lighting

  • x_2: chromaticity coordinate CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • y_2: chromaticity coordinate CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • z_2: chromaticity coordinate CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • X_2: tristimulus value CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • Y_2: tristimulus value CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • Z_2: tristimulus value CIE-XYZ-1931, 2° standard observer \insertCiteCIE2018blighting

  • u_prime: chromaticity coordinate CIE-UCS-1976 \insertCiteCIE2018blighting

  • v_prime: chromaticity coordinate CIE-UCS-1976 \insertCiteCIE2018blighting

  • E_sc: cyanopic illuminance \insertCiteLucas2014lighting

  • E_mc: chloropic illuminance \insertCiteLucas2014lighting

  • E_lc: erythropic illuminance \insertCiteLucas2014lighting

  • E_r: rhodopic illuminance \insertCiteLucas2014lighting

  • E_z: melanopic illuminance \insertCiteLucas2014lighting

  • CS: circadian stimulus \insertCiteRea2018lighting

  • CL_A: circadian light \insertCiteRea2018lighting

  • SV: blue-yellow spectral opponency \insertCiteRea2018lighting

Usage

compute_lighting(spectra, str_wavelength = NULL)

Arguments

spectra

dataframe of spectra with one wavelength column in nm

str_wavelength

name of wavelength column. Default is NULL: The first column is the wavelength column

Value

dataframe of lighting values used in lighting.

References

\insertAllCited{}

Examples

wavelength <- seq(380, 780, 1)
P2700 <- planck_law(2700, wavelength)
P6500 <- planck_law(6500, wavelength)

spectra <- data.frame(wavelength, P2700, P6500)
spectra$EES <- 1

compute_lighting(spectra)
compute_lighting(spectra, "wavelength")


Wei-Lim/lighting documentation built on Oct. 17, 2023, 3:20 p.m.