R/package_directadjusting.R

#' @eval c(
#'   codedoc::codedoc_R_package_description("directadjusting"),
#'   codedoc::codedoc_news_for_R_package()
#' )
#' @keywords internal
"_PACKAGE"

# @codedoc_comment_block R_package_description(directadjusting)
# ${desc::desc_get_field("Description")}
#
# <!-- badges: start -->
# [![R-CMD-check](https://github.com/FinnishCancerRegistry/directadjusting/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/FinnishCancerRegistry/directadjusting/actions/workflows/R-CMD-check.yaml)
# <!-- badges: end -->
#
# # Recommended installation
#
# ```r
# devtools::install_github(
#   "FinnishCancerRegistry/directadjusting",
#   ref = readline("enter latest tag on github: ")
# )
# ```
#
# # Example
# ```r
# library("directadjusting")
#
# # suppose we have poisson rates that we want to adjust for by age group.
# # they are stratified by sex.
# library("data.table")
# set.seed(1337)
#
# offsets <- rnorm(8, mean = 1000, sd = 100)
# baseline <- 100
# sex_hrs <- rep(1:2, each = 4)
# age_group_hrs <- rep(c(0.75, 0.90, 1.10, 1.25), times = 2)
# counts <- rpois(8, baseline * sex_hrs * age_group_hrs)
#
# # raw estimates
# my_stats <- data.table(
#   sex = rep(1:2, each = 4),
#   ag = rep(1:4, times = 2),
#   e = counts / offsets
# )
# my_stats[["v"]] <- my_stats[["e"]] / offsets
#
# # adjusted by age group
# my_adj_stats <- direct_adjusted_estimates(
#   stats_dt = my_stats,
#   stat_col_nms = "e",
#   var_col_nms = "v",
#   conf_lvls = 0.95,
#   conf_methods = "log",
#   stratum_col_nms = "sex",
#   adjust_col_nms = "ag",
#   weights = c(200, 300, 400, 100)
# )
#
# ```
# @codedoc_comment_block R_package_description(directadjusting)
WetRobot/directadjusting documentation built on Dec. 14, 2024, 1:04 a.m.