stats-calcs | R Documentation |
Various stastical calculations.
normalise(x, in_min = min(x, na.rm = TRUE), in_max = max(x, na.rm = TRUE))
scale_minmax(
x,
out_min,
out_max,
in_min = min(x, na.rm = TRUE),
in_max = max(x, na.rm = TRUE)
)
max_z_given_n(n)
se(x, ...)
lm_r2(lm_mod, adjusted = FALSE)
mad(x, na.rm = TRUE)
log10(x)
sym_setdiff(a, b)
q1(x)
q3(pmf)
p_se(p_est, k)
x |
numeric vector |
in_min |
minimum possible value of input, defaults to min(x, na.rm = TRUE) |
in_max |
maximum possible value of input, defaults to max(x, na.rm = TRUE) |
out_min |
numeric scalar. Minimum value of scaled output. |
out_max |
numeric scalar. Maximum value of scaled output. |
n |
numeric scalar. sample size. |
lm_mod |
model output from stats::lm |
adjusted |
logical. Whether to return adjusted R ( |
p_est , k |
estimated p value from Fisherian randomization inference from K iterations |
normalise()
: normalise vector to scale [0, 1]
scale_minmax()
: normalise vector so that max = mx
and min = mn
max_z_given_n()
: Find Maximum z score given sample size n
se()
: Calculate standard error of mean
lm_r2()
: get r squared from stats::lm()
mad()
: get median absolute deviation
log10()
: Log(x, base = 10) wrapper
sym_setdiff()
: symmetrical setdiff()
q1()
: quantile wrapper for Q1
q3()
: quantile wrapper for Q3
p_se()
: estimate standard error of estimate p value from Fisherian randomization inference
https://www.tandfonline.com/doi/abs/10.1080/00031305.1988.10475530
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.