knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

NBFvis

Dimensionality reduction of spatial omic data can reveal shared, spatially structured patterns of expression across a collection of genomic features. We study strategies for discovering and interactively visualizing low-dimensional structure in spatial omic data based on the construction of neighborhood features. We design quantile and network-based spatial features that result in spatially consistent embeddings. A simulation compares embeddings made with and without neighborhood-based featurization, and a re-analysis of [Keren et al., 2019] illustrates the overall workflow. We provide an R package, NBFvis, to support computation and interactive visualization for the proposed dimensionality reduction approach.

UMAP Embedding Plot and Spatial Plot

Installation

You can install the released version of NBFvis from GitHub.

devtools::install_github("XTH1114/NBFvis")



XTH1114/NBFvis documentation built on Sept. 14, 2022, 1:13 p.m.