Description Usage Arguments Value Functions
Gradient functions for Q-learning
1 2 3 4 5 | GradientFQI(theta, phis, discount)
GradientGGQ(theta, phis, discount)
GradientBEM(theta, phis, discount)
|
theta |
a numeric vector as model parameter. |
phis |
a list of processed outcome from |
discount |
a numeric number between 0 and 1. |
gradient
GradientFQI
: Fitted Q Iteration (objective function: MSPBE)
GradientGGQ
: Greedy Gradient-Q (objective function: MSPBE)
GradientBEM
: Bellman Error Minimization (objective function: MSBE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.