A manual to show the R package quickReg
.
The quickReg
package provide a set of functions to display and pry a dataset. More precisely, the package can display statistical descriptions for a dataset, build regression models for lm, glm and cox regressions based on specified independent variables. The package also provides several seamless functions to visualize the regression results. Some examples are shown below.
The example data is a toy dataset extracting from package PredictABEL only to be used to demonstrate the main idea of the package.
# download it from cran or github # install.packages("quickReg") # devtools::install_github("XikunHan/quickReg", build_vignettes = TRUE) library(quickReg) library(ggplot2) library(rlang) library(dplyr) # Load the dataset data(diabetes) # Show the first 6 rows of the data head(diabetes)
Functions display_table or display_table_group can be used to show statistical descriptions of the dataset.
display_1<-display_table(data=diabetes,variables=c("age","smoking","education"),group="CFHrs2230199") display_1 # sub-group analysis by sex display_2<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = "sex") display_2 # sub-group analysis by two variables display_3<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education")) display_3 # Sub-group analysis can be a combination display_4<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education"),group_combine = TRUE) display_4
# Apply univariate regression models reg_1<-reg_x(data = diabetes, y = 5, factors = c(1, 3, 4), model = 'glm') reg_1 # Or survival analysis reg_2<-reg_x(data = diabetes, x = c(3:4, 6), y ="diabetes",time=2,factors = c(1, 3, 4), model = 'coxph') reg_2 # adjusting for covariates reg_3<-reg_x(data = diabetes, x = c("sex","age"), y ="diabetes" ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'glm',cov_show = TRUE) reg_3 # regression on several dependent variables reg_4<-reg_y(data = diabetes, x = c("sex","age","CFHrs1061170"), y =c("systolic","diastolic","BMI") ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'lm') reg_4 # do a subgroup analysis reg_5<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group="sex") reg_5 # or two subgroup analysis reg_6<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking")) reg_6 # or subgroup combination analysis reg_7<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking"),group_combine = TRUE) reg_7
plot(reg_1) # if the OR value is very large, we can set a limit plot(reg_1,limits=c(NA,3)) # Sort the variables alphabetically plot(reg_1,limits=c(NA,3), sort ="alphabetical") # Similarly, we can plot several dependent variables result plot(reg_4) # Subgroup and several dependent variables plot(reg_5)+facet_grid(sex~y) # modify the plot library(ggplot2);library(ggthemes) plot(reg_1,limits=c(0.5,2))+ labs(list(title = "Regression Model", x = "variables"))+ theme_classic() %+replace% theme(legend.position ="none",axis.text.x=element_text(angle=45,size=rel(1.5)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.