Description Usage Arguments Details Value References See Also Examples
Inverse Gaussian distribution
| 1 2 3 4 | 
| x | positive value; could be a vector | 
| p | value in (0,1); could be a vector | 
| mu | mean parameter m of inverse Gaussian | 
| vsi | second parameter varsigma=lambda of inverse Gaussian | 
| mxiter | maximum number of iterations | 
| eps | tolerance for convergence | 
| mxstep | bound on step size for Newton-Raphson iterations | 
| iprint | print flag for iterations | 
| n | simulation sample size | 
Seshadri (1993): with mu>0, vsi>0 means the pdf is: f(x;mu,vsi)= [sqrt(vsi)/sqrt(2*pi*x^3)] * exp[-(vsi/[2mu^2])*(x-mu)^2/x] for x>0.
Reparametrization has mu=zeta*eta as the mean and vsi=eta^2 where eta=convolution parameter; zeta is like a scale parameter that can be set to 1 for the copula
Property of the cdf is pIG(x,mu,vsi)=pIG(x/mu,1,vsi/mu)
cdf or pdf or quantile or random sample
Seshadri V (1993). The Inverse Gaussian Distribution. Clarendon Press.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.