Description Usage Arguments Value References Examples
Bivariate Archimedean copula based on inverse gamma Laplace transform
| 1 2 3 4 5 6 7 | pinvgamA(u,v,cpar)
dinvgamA(u,v,cpar)
pcondinvgamA(v,u,cpar)  # C_{2|1}(v|u;cpar)
rminvgamA(n,d,cpar)
logdinvgamA(u,v,cpar,pgrid=0)
invgamA.cpar2tau(cpar)
invgamA.tau2cpar(tau)
 | 
| u | value in interval 0,1; could be a vector | 
| v | value in interval 0,1; could be a vector | 
| cpar | parameter: could be scalar or vector (positive-valued) | 
| n | sample size for ripsA, positive integer | 
| d | dimension | 
| pgrid | grid of values in (0,1) to use for monotone interpolation; see code for the default vector when pgrid is input as 0 | 
| tau | Kendall value in (0,1) | 
cdf, pdf, conditional cdf, conditional quantile value(s) for pinvgamA, dinvgamA, pcondinvgamA, qcondinvgamA respectively;
log density for logdinvgamA (use for maximum likelihood);
random d-vectors for rminvgamA;
Kendall's tau for invgamA.cpar2tau;
copula parameter for invgamA.tau2cpar
Joe H and Hua L (2010). Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis, v 102, 1454–1471
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | u=seq(.1,.6,.1)
v=seq(.4,.9,.1)
cpar=.5
pp=pcondinvgamA(v,u,cpar)
print(pp)
tau=invgamA.cpar2tau(cpar)
print(tau)
set.seed(123)
udata=rminvgamA(500,d=2,cpar=2) # tau=0.5
print(taucor(udata[,1],udata[,2]))
print(semicor(udata,inscore=FALSE))
ml=nlm(bivcopnllk,p=1.5,hessian=TRUE,print.level=1,
  udat=udata,logdcop=logdinvgamA,LB=.0001,UB=10)
## Not run: 
# contour of density with N(0,1) margins
zvec=seq(-3,3,.2)
contourBivCop(2,zvec,dinvgamA)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.