#' Model Cardio Function
#'
#' @param age edad del paciente
#' @param sex sexo del paciente ("Male","Female")
#' @param thalach presion sanguinea del paciente
#'
#' @return
#' @export
#'
#' @examples
#' model_cardio(25,"Male",100)
model_cardio<-function(age, sex, thalach){
hd_data<-read.csv("./heart_data.csv", sep=",")
# hd_data %>% mutate(hd = ifelse(class > 0, 1, 0))-> hd_data
#
# # recode sex using mutate function and save as hd_data
# hd_data %>% mutate(sex = factor(sex, levels = 0:1, labels = c("Female","Male")))-> hd_data
#
#
#
# model <- glm(data = hd_data, hd~age+sex+thalach, family="binomial")
#
#
# # tidy up the coefficient table
# tidy_m <- model %>% tidy()
# tidy_m
#
# # calculate OR
# tidy_m$OR <- exp(tidy_m$estimate)
#
# # calculate 95% CI and save as lower CI and upper CI
# tidy_m$lower_CI <- exp(tidy_m$estimate - 1.96 * tidy_m$std.error)
# tidy_m$upper_CI <- exp(tidy_m$estimate + 1.96 * tidy_m$std.error)
#
#
#
# # get the predicted probability in our dataset using the predict() function
# pred_prob <- predict(model, hd_data, type = "response")
#
# # create a decision rule using probability 0.5 as cutoff and save the predicted decision into the main data frame
# hd_data$pred_hd <- ifelse(pred_prob>=.5,1,0)
#
# # create a newdata data frame to save a new case information
# newdata <- data.frame(age, sex, thalach)
#
# # predict probability for this new case and print out the predicted value
# p_new <- predict(model, newdata, type = "response")
#
#
# return(p_new)
#
return(hd_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.