View source: R/ElasticNetVAR.R
| ElasticNetVAR | R Documentation | 
Estimation of a VAR using equation-by-equation LASSO, Ridge or Elastic Net regressions.
ElasticNetVAR(
  x,
  configuration = list(nlag = 1, nfolds = 10, loss = "mae", alpha = NULL, delta_alpha =
    0.1)
)
| x | zoo data matrix | 
| configuration | Model configuration | 
| nlag | Lag length | 
| nfolds | N-fold cross validation | 
| loss | Loss function | 
| alpha | LASSO is alpha equal 1 and Ridge if alpha equal 0 | 
| delta_alpha | Steps between 0 and 1. If alpha is NULL alpha is estimated based upon loss and nfolds | 
Estimate VAR model
David Gabauer
Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., & Tibshirani, R. J. (2012). Strong rules for discarding predictors in lasso‐type problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 245-266.\ Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.\ Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320.\ Demirer, M., Diebold, F. X., Liu, L., & Yilmaz, K. (2018). Estimating global bank network connectedness. Journal of Applied Econometrics, 33(1), 1-15.\ Gabauer, D., Gupta, R., Marfatia, H., & Miller, S. M. (2020). Estimating US Housing Price Network Connectedness: Evidence from Dynamic Elastic Net, Lasso, and Ridge Vector Autoregressive Models. Lasso, and Ridge Vector Autoregressive Models (July 26, 2020).
data(dy2012) fit = ElasticNetVAR(dy2012, configuration=list(nlag=1, alpha=1, nfolds=10, loss="mae"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.