library(truncdist)
library(inferenceFitnessLandscape)
library(readr)
library(usethis)
#### Custom truncated distributions ####
rgeom_trunc <- function(n, a, b, prob) {rtrunc(n, spec = "geom", a, b, prob)}
rexp_trunc <- function(n, a, b, rate) {rtrunc(n, spec = "exp", a, b, rate)}
#### Generates parameters environment reference ####
data("reference_empirical_fl")
fitness_wt_ref <- reference_empirical_fl[1, dim(reference_empirical_fl)[2]]
nb_simul <- 10^6
pn <- 1/5
rlambda <- 1/0.2
rmaxfitness <- 1/2
alpha_inf <- 0.1
alpha_sup <- 10
Q_inf <- 0.5
Q_sup <- 6
n_prior <- rgeom_trunc(nb_simul, 0, Inf, pn)
reference_fgmrmut_parameter <- cbind(n = n_prior,
lambda = rexp(nb_simul, rlambda),
maxfitness = rexp_trunc(nb_simul, fitness_wt_ref, Inf, rmaxfitness),
alpha = runif(nb_simul, alpha_inf, alpha_sup),
Q = runif(nb_simul, Q_inf, Q_sup),
m = n_prior)
write.table(x = reference_fgmrmut_parameter,
file = "data-raw/reference_fgmrmut_parameter.csv",
col.names = TRUE)
use_data(reference_fgmrmut_parameter, overwrite = TRUE)
#### Generates parameters environment new ####
data("new_empirical_fl")
fitness_wt_new <- new_empirical_fl[1, dim(new_empirical_fl)[2]]
nb_simul <- 10^6
rlambda <- 1/0.2
rmaxfitness <- 1/2
alpha_inf <- 0.1
alpha_sup <- 10
Q_inf <- 0.5
Q_sup <- 6
theta_inf <- 0
theta_sup <- pi
new_fgmrmut2env_parameter <- cbind(lambda = rexp(nb_simul, rlambda),
maxfitness = rexp_trunc(nb_simul, fitness_wt_new, Inf, rmaxfitness),
alpha = runif(nb_simul, alpha_inf, alpha_sup),
Q = runif(nb_simul, Q_inf, Q_sup),
theta = runif(nb_simul, theta_inf, theta_sup))
write.table(x = new_fgmrmut2env_parameter,
file = "data-raw/new_fgmrmut2env_parameter.csv",
col.names = TRUE)
use_data(new_fgmrmut2env_parameter, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.