View source: R/init_population.R
| init_population | R Documentation | 
Create nStart random sub-selections from the indexed
grid and assign binary variable 1 to selected grids. This function
initiates the genetic algorithm with a first random population and will
only be needed in the first iteration.
init_population(Grid, n, nStart = 100)
| Grid | The data.frame output of  | 
| n | A numeric value indicating the amount of required turbines. | 
| nStart | A numeric indicating the amount of randomly generated initial individuals. Default is 100. | 
Returns a list of nStart initial individuals, each consisting
of n turbines. Resulting list has the x and y coordinates, the grid
cell ID and a binary variable of 1, indicating a turbine in the grid cell.
Other Genetic Algorithm Functions: 
crossover(),
fitness(),
genetic_algorithm(),
mutation(),
selection(),
trimton()
library(sf)
## Exemplary input Polygon with 2km x 2km:
Polygon1 <- sf::st_as_sf(sf::st_sfc(
  sf::st_polygon(list(cbind(
    c(4498482, 4498482, 4499991, 4499991, 4498482),
    c(2668272, 2669343, 2669343, 2668272, 2668272)
  ))),
  crs = 3035
))
Grid <- grid_area(Polygon1, 200, 1, TRUE)
## Create 5 individuals with 10 wind turbines each.
firstPop <- init_population(Grid = Grid[[1]], n = 10, nStart = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.