full_sample_multi <- spec_dataset(dims_comb_data, ana_dims, ana_threshold, "multi_residue")
(ref:full-sample-multi) 总体多残留指标
sp_dable(full_sample_multi, ref_text = "(ref:full-sample-multi)", filter = "none")
表 \@ref(tab:full-sample-multi) 给出了 r year_range[1]
- r year_range[2]
年蔬菜类产品的抽检样本量及多残留指标。可以看出,r year_range[1]
- r year_range[2]
年共抽取样本 r full_sample_multi[["sample_size"]]
例,多残留检出率为 r full_sample_multi[["multi_detection_rate_percent"]]
%,最大多残留检出数为 r full_sample_multi[["max_detection_num"]]
,多残留超标率为 r full_sample_multi[["multi_defective_rate_percent"]]
%,最大多残留超标数为 r full_sample_multi[["max_defective_num"]]
。
year_multi <- spec_dataset(dims_comb_data, ana_dims, ana_threshold, "multi_residue", year) |> factor_dims(year)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year"))
(ref:year-multi) 各年份多残留指标
sp_dable(year_multi, ref_text = "(ref:year-multi)")
表 \@ref(tab:year-multi) 给出了 r year_range[1]
- r year_range[2]
年蔬菜类产品年抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-multi-det-bar-line-echart) 和图 \@ref(fig:year-multi-def-bar-line-echart)。可以看出,r year_range[1]
- r year_range[2]
年蔬菜类产品年抽检样本量在 r text_range(year_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_multi, "max_defective_num")
之间。
bar_line_echart( year_multi, x_var = "year", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
bar_line_echart( year_multi, x_var = "year", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
quarter_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter ) |> factor_dims(quarter)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter"))
(ref:quarter-multi) 各季度多残留指标
sp_dable(quarter_multi, ref_text = "(ref:quarter-multi)")
表 \@ref(tab:quarter-multi) 给出了蔬菜类产品各季度抽检样本量及多残留指标,其图形展示见图 \@ref(fig:quarter-multi-det-bar-line-echart) 和图 \@ref(fig:quarter-multi-def-bar-line-echart)。可以看出,蔬菜类产品各季度抽检样本量在 r text_range(quarter_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_multi, "max_defective_num")
之间。
bar_line_echart( quarter_multi, x_var = "quarter", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
bar_line_echart( quarter_multi, x_var = "quarter", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
province_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", province ) |> factor_dims(province)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("province"))
(ref:province-multi) 各省份多残留指标
sp_dable(province_multi, ref_text = "(ref:province-multi)")
表 \@ref(tab:province-multi) 给出了蔬菜类产品在 r nrow(province)
个省市自治区的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:province-multi-det-rate-emap) - 图 \@ref(fig:province-multi-def-num-emap)。可以看出,各省市自治区蔬菜类产品抽检样本量在 r text_range(province_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(province_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(province_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(province_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(province_multi, "max_defective_num")
之间。
map_echart( province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_detection_rate_percent" )
map_echart( province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE )
map_echart( province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_defective_rate_percent" )
map_echart( province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE )
category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", category ) |> factor_dims(category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("category"))
(ref:category-multi) 各蔬菜类别多残留指标
sp_dable(category_multi, ref_text = "(ref:category-multi)")
表 \@ref(tab:category-multi) 给出了 r nrow(category)
个蔬菜类别的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:category-multi-det-bar-line-echart) - 图 \@ref(fig:category-multi-num-scatter-echart)。可以看出,各蔬菜类别抽检样本量在 r text_range(category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(category_multi, "max_defective_num")
之间。
bar_line_echart( category_multi, x_var = "category", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
category_multi |> e_charts(category) |> e_pie(multi_detection_rate_percent, name = "多残留检出率(%)", roseType = "radius", center = c("25%", "50%"), radius = "45%") |> e_pie(max_detection_num, name = "最大多残留检出数", roseType = "radius", center = c("75%", "50%"), radius = "45%") |> e_tooltip(trigger = "item")
bar_line_echart( category_multi, x_var = "category", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
category_multi |> e_charts(category) |> e_pie(multi_defective_rate_percent, name = "多残留超标率(%)", roseType = "radius", center = c("25%", "50%"), radius = "45%") |> e_pie(max_defective_num, name = "最大多残留超标数", roseType = "radius", center = c("75%", "50%"), radius = "45%") |> e_tooltip(trigger = "item")
scatter_echart( category_multi, x_var = "max_detection_num", y_var = "multi_detection_rate_percent", label_var = "category", increment = 1, shrink_width = "70%" )
scatter_echart( category_multi, x_var = "max_defective_num", y_var = "multi_defective_rate_percent", label_var = "category", increment = 1, shrink_width = "70%" )
scatter_echart( category_multi, x_var = "multi_defective_rate_percent", y_var = "multi_detection_rate_percent", label_var = "category", increment = 1, shrink_width = "70%" )
scatter_echart( category_multi, x_var = "max_defective_num", y_var = "max_detection_num", label_var = "category", increment = 1, shrink_width = "70%" )
product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", product ) |> factor_dims(product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("product"))
(ref:product-multi) 各品种多残留指标
sp_dable(product_multi, ref_text = "(ref:product-multi)")
表 \@ref(tab:product-multi) 给出了 r nrow(product)
个蔬菜品种的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:product-multi-det-rose-eplot) - 图 \@ref(fig:product-multi-num-scatter-echart)。可以看出,各蔬菜品种抽检样本量在 r text_range(product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(product_multi, "max_defective_num")
之间。
product_multi |> e_charts(product) |> e_pie(multi_detection_rate_percent, name = "多残留检出率(%)", roseType = "radius", center = c("25%", "50%"), radius = "45%") |> e_pie(max_detection_num, name = "最大多残留检出数", roseType = "radius", center = c("75%", "50%"), radius = "45%") |> e_tooltip(trigger = "item")
scatter_echart( product_multi, x_var = "max_detection_num", y_var = "multi_detection_rate_percent", label_var = "product", increment = 1, shrink_width = "70%" )
product_multi |> e_charts(product) |> e_pie(multi_defective_rate_percent, name = "多残留超标率(%)", roseType = "radius", center = c("25%", "50%"), radius = "45%") |> e_pie(max_defective_num, name = "最大多残留超标数", roseType = "radius", center = c("75%", "50%"), radius = "45%") |> e_tooltip(trigger = "item")
scatter_echart( product_multi, x_var = "max_defective_num", y_var = "multi_defective_rate_percent", label_var = "product", increment = 1, shrink_width = "70%" )
scatter_echart( product_multi, x_var = "multi_defective_rate_percent", y_var = "multi_detection_rate_percent", label_var = "product", increment = 1, shrink_width = "70%" )
scatter_echart( product_multi, x_var = "max_defective_num", y_var = "max_detection_num", label_var = "product", increment = 1, shrink_width = "70%" )
year_quarter_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter )
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "quarter"))
(ref:year-quarter-multi) 各年份各季度多残留指标
sp_dable(year_quarter_multi |> factor_dims(year, quarter), ref_text = "(ref:year-quarter-multi)")
表 \@ref(tab:year-quarter-multi) 给出了 r year_range[1]
- r year_range[2]
年每年四个季度的蔬菜类产品的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-quarter-multi-det-bar-line-echart) 和图 \@ref(fig:year-quarter-multi-def-bar-line-echart)。可以看出,各蔬菜品种抽检样本量在 r text_range(year_quarter_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_quarter_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_quarter_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_quarter_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_quarter_multi, "max_defective_num")
之间。
bar_line_echart( year_quarter_multi |> combine_year_quarter(), x_var = "timeline", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE, x_axis_name = "时间", x_name_gap = 40, long_x_label = TRUE, x_label_width = 30 ) |> e_labels(fontWeight = "bold", fontSize = 11)
bar_line_echart( year_quarter_multi |> combine_year_quarter(), x_var = "timeline", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE, x_axis_name = "时间", x_name_gap = 40, long_x_label = TRUE, x_label_width = 30 ) |> e_labels(fontWeight = "bold", fontSize = 11)
year_province_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, province ) |> factor_dims(year, province)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "province"))
(ref:year-province-multi) 各年份各省份多残留指标
sp_dable(year_province_multi, ref_text = "(ref:year-province-multi)")
表 \@ref(tab:year-province-multi) 给出了 r year_range[1]
- r year_range[2]
年 r nrow(province)
个省市自治区的蔬菜类产品的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-province-multi-det-rate-emap) 和图 \@ref(fig:year-province-multi-def-num-emap)。可以看出,各年份各省市自治区的抽检样本量在 r text_range(year_province_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_province_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_province_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_province_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_province_multi, "max_defective_num")
之间。
map_echart( year_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_detection_rate_percent", timeline_var = "year" )
map_echart( year_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "year" )
map_echart( year_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_defective_rate_percent", timeline_var = "year" )
map_echart( year_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "year" )
year_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, category ) |> factor_dims(year, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "category"))
(ref:year-category-multi) 各年份各蔬菜类别多残留指标
sp_dable(year_category_multi, ref_text = "(ref:year-category-multi)")
表 \@ref(tab:year-category-multi) 给出了 r year_range[1]
- r year_range[2]
年 r nrow(category)
个蔬菜类别的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-category-multi-det-bar-line-echart) - 图 \@ref(fig:year-category-multi-num-scatter-echart)。可以看出,各年份各蔬菜类别的抽检样本量在 r text_range(year_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_category_multi, "max_defective_num")
之间。
bar_line_echart( year_category_multi, timeline_var = "year", x_var = "category", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
bar_line_echart( year_category_multi, timeline_var = "year", x_var = "category", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
scatter_timeline_echart( year_category_multi, timeline_var = "year", x_var = "category", y_var = "multi_detection_rate_percent", size_var = "max_detection_num" )
scatter_timeline_echart( year_category_multi, timeline_var = "year", x_var = "category", y_var = "multi_defective_rate_percent", size_var = "max_defective_num" )
bar_line_echart( year_category_multi, timeline_var = "category", x_var = "year", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
bar_line_echart( year_category_multi, timeline_var = "category", x_var = "year", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
year_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, product ) |> factor_dims(year, product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "product"))
(ref:year-product-multi) 各年份各品种多残留指标
sp_dable(year_product_multi, ref_text = "(ref:year-product-multi)")
表 \@ref(tab:year-product-multi) 给出了 r year_range[1]
- r year_range[2]
年 r nrow(product)
个蔬菜品种的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-product-multi-det-scatter-echart) 和图 \@ref(fig:year-product-multi-def-scatter-echart)。可以看出,各年份各蔬菜品种的抽检样本量在 r text_range(year_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_product_multi, "max_defective_num")
之间。
scatter_timeline_echart( year_product_multi, timeline_var = "year", x_var = "product", y_var = "multi_detection_rate_percent", size_var = "max_detection_num", x_label_width = 1 )
scatter_timeline_echart( year_product_multi, timeline_var = "year", x_var = "product", y_var = "multi_defective_rate_percent", size_var = "max_defective_num", x_label_width = 1 )
quarter_province_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter, province ) |> factor_dims(quarter, province)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter", "province"))
(ref:quarter-province-multi) 各季度各省份多残留指标
sp_dable(quarter_province_multi, ref_text = "(ref:quarter-province-multi)")
表 \@ref(tab:quarter-province-multi) 给出了 r nrow(province)
个省市自治区在四个季度的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:quarter-province-multi-det-rate-emap) - 图 \@ref(fig:quarter-province-multi-def-num-emap)。可以看出,各季度各省份的抽检样本量在 r text_range(quarter_province_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_province_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_province_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_province_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_province_multi, "max_defective_num")
之间。
map_echart( quarter_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_detection_rate_percent", timeline_var = "quarter" )
map_echart( quarter_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "quarter" )
map_echart( quarter_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_defective_rate_percent", timeline_var = "quarter" )
map_echart( quarter_province_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "quarter" )
quarter_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter, category ) |> factor_dims(quarter, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter", "category"))
(ref:quarter-category-multi) 各季度各蔬菜类别多残留指标
sp_dable(quarter_category_multi, ref_text = "(ref:quarter-category-multi)")
表 \@ref(tab:quarter-category-multi) 给出了 r nrow(category)
个蔬菜类别在四个季度的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:quarter-category-multi-det-bar-line-echart) - 图 \@ref(fig:quarter-category-multi-num-scatter-echart)。可以看出,各季度各蔬菜类别的抽检样本量在 r text_range(quarter_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_category_multi, "max_defective_num")
之间。
bar_line_echart( quarter_category_multi, timeline_var = "quarter", x_var = "category", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
bar_line_echart( quarter_category_multi, timeline_var = "quarter", x_var = "category", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
scatter_timeline_echart( quarter_category_multi, timeline_var = "quarter", x_var = "category", y_var = "multi_detection_rate_percent", size_var = "max_detection_num" )
scatter_timeline_echart( quarter_category_multi, timeline_var = "quarter", x_var = "category", y_var = "multi_defective_rate_percent", size_var = "max_defective_num" )
bar_line_echart( quarter_category_multi, timeline_var = "category", x_var = "quarter", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
bar_line_echart( quarter_category_multi, timeline_var = "category", x_var = "quarter", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
quarter_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter, product ) |> factor_dims(quarter, product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter", "product"))
(ref:quarter-product-multi) 各季度各品种多残留指标
sp_dable(quarter_product_multi, ref_text = "(ref:quarter-product-multi)")
表 \@ref(tab:quarter-product-multi) 给出了 r nrow(product)
个蔬菜品种在四个季度的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:quarter-product-multi-det-bar-line-echart) 和图 \@ref(fig:quarter-product-multi-def-bar-line-echart)。可以看出,各季度各蔬菜品种的抽检样本量在 r text_range(quarter_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_product_multi, "max_defective_num")
之间。
scatter_timeline_echart( quarter_product_multi, timeline_var = "quarter", x_var = "product", y_var = "multi_detection_rate_percent", size_var = "max_detection_num", x_label_width = 1 )
scatter_timeline_echart( quarter_product_multi, timeline_var = "quarter", x_var = "product", y_var = "multi_defective_rate_percent", size_var = "max_defective_num", x_label_width = 1 )
province_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", province, category ) |> factor_dims(province, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("province", "category"))
(ref:province-category-multi) 各省份各蔬菜类别多残留指标
sp_dable(province_category_multi, ref_text = "(ref:province-category-multi)")
表 \@ref(tab:province-category-multi) 给出了 r nrow(province)
个省市自治区的 r nrow(category)
个蔬菜类别的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:province-category-multi-det-rate-emap) - 图 \@ref(fig:province-category-multi-def-num-emap)。可以看出,各省市自治区各蔬菜类别的抽检样本量在 r text_range(province_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(province_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(province_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(province_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(province_category_multi, "max_defective_num")
之间。
map_echart( province_category_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, timeline_var = "category", value_var = "multi_detection_rate_percent" ) |> e_timeline_opts(controlStyle = list(showPlayBtn = FALSE))
map_echart( province_category_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, timeline_var = "category", value_var = "max_detection_num" ) |> e_timeline_opts(controlStyle = list(showPlayBtn = FALSE))
map_echart( province_category_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, timeline_var = "category", value_var = "multi_defective_rate_percent" ) |> e_timeline_opts(controlStyle = list(showPlayBtn = FALSE))
map_echart( province_category_multi |> shorten_province_name(), map_json = cn_province_map_json_2015, timeline_var = "category", value_var = "max_defective_num" ) |> e_timeline_opts(controlStyle = list(showPlayBtn = FALSE))
province_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", province, product ) |> factor_dims(province, product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("province", "product"))
(ref:province-product-multi) 各省份各品种多残留指标
sp_dable(province_product_multi, ref_text = "(ref:province-product-multi)")
表 \@ref(tab:province-product-multi) 给出了 r nrow(province)
个省市自治区的 r nrow(product)
个蔬菜品种的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:province-product-multi-det-rate-eheatmap) - 图 \@ref(fig:province-product-multi-def-num-eheatmap)。可以看出,各省市自治区各蔬菜品种的抽检样本量在 r text_range(province_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(province_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(province_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(province_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(province_product_multi, "max_defective_num")
之间。
heatmap_echart( province_product_multi |> shorten_province_name(), x_var = "product", y_var = "province", value_var = "multi_detection_rate_percent" )
heatmap_echart( province_product_multi |> shorten_province_name(), x_var = "product", y_var = "province", value_var = "max_detection_num" )
heatmap_echart( province_product_multi |> shorten_province_name(), x_var = "product", y_var = "province", value_var = "multi_defective_rate_percent" )
heatmap_echart( province_product_multi |> shorten_province_name(), x_var = "product", y_var = "province", value_var = "max_defective_num" )
year_quarter_province_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter, province )
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "quarter", "province"))
(ref:year-quarter-province-multi) 各年份各季度各省份多残留指标
sp_dable( year_quarter_province_multi |> factor_dims(year, quarter, province), ref_text = "(ref:year-quarter-province-multi)" )
表 \@ref(tab:year-quarter-province-multi) 给出了 r year_range[1]
年第一季度到 r year_range[2]
年第四季度 r nrow(province)
个省市自治区的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:province-product-multi-det-rate-eheatmap) - 图 \@ref(fig:year-quarter-province-multi-def-num-eheatmap)。可以看出,各年份各季度各省市自治区的抽检样本量在 r text_range(year_quarter_province_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_quarter_province_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_quarter_province_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_quarter_province_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_quarter_province_multi, "max_defective_num")
之间。
map_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_detection_rate_percent", timeline_var = "timeline", interval = 3, timeline_label_width = 60 )
heatmap_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name() |> factor_dims(timeline, province), x_var = "province", y_var = "timeline", value_var = "multi_detection_rate_percent", y_axis_name = "年份-季度" )
map_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "timeline", interval = 3, timeline_label_width = 60 )
heatmap_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name() |> factor_dims(timeline, province), x_var = "province", y_var = "timeline", value_var = "max_detection_num", y_axis_name = "年份-季度" )
map_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "multi_defective_rate_percent", timeline_var = "timeline", interval = 3, timeline_label_width = 60 )
heatmap_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name() |> factor_dims(timeline, province), x_var = "province", y_var = "timeline", value_var = "multi_defective_rate_percent", y_axis_name = "年份-季度" )
map_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name(), map_json = cn_province_map_json_2015, value_var = "max_detection_num", use_digits = FALSE, timeline_var = "timeline", interval = 3, timeline_label_width = 60 )
heatmap_echart( year_quarter_province_multi |> combine_year_quarter() |> shorten_province_name() |> factor_dims(timeline, province), x_var = "province", y_var = "timeline", value_var = "max_detection_num", y_axis_name = "年份-季度" )
year_quarter_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter, category )
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "quarter", "category"))
(ref:year-quarter-category-multi) 各年份各季度各蔬菜类别多残留指标
sp_dable( year_quarter_category_multi |> factor_dims(year, quarter, category), ref_text = "(ref:year-quarter-category-multi)" )
表 \@ref(tab:year-quarter-category-multi) 给出了 r year_range[1]
年第一季度到 r year_range[2]
年第四季度 r nrow(category)
个蔬菜类别的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-quarter-category-multi-det-bar-line-echart) - 图 \@ref(fig:year-quarter-category-multi-num-scatter-echart)。可以看出,各年份各季度各蔬菜类别的抽检样本量在 r text_range(year_quarter_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_quarter_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_quarter_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_quarter_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_quarter_category_multi, "max_defective_num")
之间。
bar_line_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "timeline", x_var = "category", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", use_y_upper_bound = TRUE )
bar_line_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "timeline", x_var = "category", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", use_y_upper_bound = TRUE )
scatter_timeline_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "timeline", x_var = "category", y_var = "multi_detection_rate_percent", size_var = "max_detection_num", symbol_size = c(1,50), interval = 3, timeline_label_width = 60 )
scatter_timeline_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "timeline", x_var = "category", y_var = "multi_defective_rate_percent", size_var = "max_defective_num", symbol_size = c(1,50), interval = 3, timeline_label_width = 60 )
bar_line_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "category", x_var = "timeline", bar_var = "max_detection_num", line_var = "multi_detection_rate_percent", x_axis_name = "年份-季度", use_y_upper_bound = TRUE, long_x_label = TRUE, x_label_width = 30 ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
bar_line_echart( year_quarter_category_multi |> combine_year_quarter() |> factor_dims(timeline, category), timeline_var = "category", x_var = "timeline", bar_var = "max_defective_num", line_var = "multi_defective_rate_percent", x_axis_name = "年份-季度", use_y_upper_bound = TRUE, long_x_label = TRUE, x_label_width = 30 ) |> e_timeline_opts( label = list(interval = 0, width = 50, overflow = "break"), padding = 0 )
year_quarter_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter, product )
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "quarter", "product"))
(ref:year-quarter-product-multi) 各年份各季度各品种多残留指标
sp_dable( year_quarter_product_multi |> factor_dims(year, quarter, product), ref_text = "(ref:year-quarter-product-multi)" )
表 \@ref(tab:year-quarter-product-multi) 给出了 r year_range[1]
年第一季度到 r year_range[2]
年第四季度 r nrow(product)
个蔬菜品种的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:year-quarter-product-multi-det-rate-eheatmap) - 图 \@ref(fig:year-quarter-product-multi-def-num-eheatmap)。可以看出,各年份各季度各蔬菜品种的抽检样本量在 r text_range(year_quarter_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_quarter_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_quarter_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_quarter_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_quarter_product_multi, "max_defective_num")
之间。
heatmap_echart( year_quarter_product_multi |> combine_year_quarter() |> factor_dims(product), x_var = "product", y_var = "timeline", value_var = "multi_detection_rate_percent", y_axis_name = "年份-季度" )
heatmap_echart( year_quarter_product_multi |> combine_year_quarter() |> factor_dims(product), x_var = "product", y_var = "timeline", value_var = "max_detection_num", y_axis_name = "年份-季度" )
heatmap_echart( year_quarter_product_multi |> combine_year_quarter() |> factor_dims(product), x_var = "product", y_var = "timeline", value_var = "multi_defective_rate_percent", y_axis_name = "年份-季度" )
heatmap_echart( year_quarter_product_multi |> combine_year_quarter() |> factor_dims(product), x_var = "product", y_var = "timeline", value_var = "max_defective_num", y_axis_name = "年份-季度" )
year_province_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, province, category ) |> factor_dims(year, province, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "province", "category"))
(ref:year-province-category-multi) 各年份各省份各蔬菜类别多残留指标
sp_dable(year_province_category_multi, ref_text = "(ref:year-province-category-multi)")
表 \@ref(tab:year-province-category-multi) 给出了 r year_range[1]
- r year_range[2]
年 r nrow(province)
个省市自治区的 r nrow(category)
个蔬菜类别的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:2016-province-category-multi-det-rate-eheatmap) - 图 \@ref(fig:2020-province-category-multi-def-num-eheatmap)。可以看出,各年份各省市自治区各蔬菜类别的抽检样本量在 r text_range(year_province_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_province_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_province_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_province_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_province_category_multi, "max_defective_num")
之间。
heatmap_echart( year_province_category_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_category_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
year_province_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, province, product ) |> factor_dims(year, province, product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "province", "product"))
(ref:year-province-product-multi) 各年份各省份各品种多残留指标
sp_dable(year_province_product_multi, ref_text = "(ref:year-province-product-multi)")
表 \@ref(tab:year-province-product-multi) 给出了 r year_range[1]
- r year_range[2]
年 r nrow(province)
个省市自治区的 r nrow(product)
个蔬菜品种的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:2016-province-product-multi-det-rate-eheatmap) - 图 \@ref(fig:2020-province-product-multi-def-num-eheatmap)。可以看出,各年份各省市自治区各蔬菜品种的抽检样本量在 r text_range(year_province_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_province_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_province_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_province_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_province_product_multi, "max_defective_num")
之间。
heatmap_echart( year_province_product_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2016) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2017) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2018) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2019) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( year_province_product_multi |> filter(year == 2020) |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
quarter_province_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter, province, category ) |> factor_dims(quarter, province, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter", "province", "category"))
(ref:quarter-province-category-multi) 各季度各省份各蔬菜类别多残留指标
sp_dable(quarter_province_category_multi, ref_text = "(ref:quarter-province-category-multi)")
表 \@ref(tab:quarter-province-category-multi) 给出了r nrow(province)
个省市自治区的 r nrow(category)
个蔬菜类别在四个季度的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:Q1-province-category-multi-det-rate-eheatmap) - 图 \@ref(fig:Q4-province-category-multi-def-num-eheatmap),需要注意的是,豆类在各季度各省份的抽检样本量均低于阈值,不参与分析,因此图中只有其余 7 种蔬菜类别。可以看出,各季度各省市自治区各蔬菜类别的抽检样本量在 r text_range(quarter_province_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_province_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_province_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_province_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_province_category_multi, "max_defective_num")
之间。
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_category_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "category", value_var = "max_defective_num", height = "300%" )
quarter_province_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", quarter, province, product ) |> factor_dims(quarter, province, product)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("quarter", "province", "product"))
(ref:quarter-province-product-multi) 各季度各省份各品种多残留指标
sp_dable(quarter_province_product_multi, ref_text = "(ref:quarter-province-product-multi)")
表 \@ref(tab:quarter-province-product-multi) 给出了 r nrow(province)
个省市自治区的 r nrow(product)
个蔬菜品种在四个季度的抽检样本量及多残留指标,其图形展示见图 \@ref(fig:Q1-province-product-multi-det-rate-eheatmap) - 图 \@ref(fig:Q4-province-product-multi-def-num-eheatmap)。可以看出,各季度各省市自治区各蔬菜品种的抽检样本量在 r text_range(quarter_province_product_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(quarter_province_product_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(quarter_province_product_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(quarter_province_product_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(quarter_province_product_multi, "max_defective_num")
之间。
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_detection_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_detection_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "multi_defective_rate_percent", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第一季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第二季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第三季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
heatmap_echart( quarter_province_product_multi |> filter(quarter == "第四季度") |> shorten_province_name(), x_var = "province", y_var = "product", value_var = "max_defective_num", height = "300%" )
year_quarter_province_category_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter, province, category ) |> factor_dims(year, quarter, province, category)
r text_threshold(threshold_data = ana_threshold, dims = ana_dims, ana_dims = c("year", "quarter", "province", "category"))
(ref:year-quarter-province-category-multi) 各年份各季度各省份各蔬菜类别多残留指标
sp_dable(year_quarter_province_category_multi, ref_text = "(ref:year-quarter-province-category-multi)")
表 \@ref(tab:year-quarter-province-category-multi) 给出了 r year_range[1]
年第一季度到 r year_range[2]
年第四季度 r nrow(province)
个省市自治区的 r nrow(category)
个蔬菜类别在四个季度的抽检样本量及多残留指标。可以看出,各年份各季度各省市自治区各蔬菜类别的抽检样本量在 r text_range(year_quarter_province_category_multi, "sample_size")
之间,多残留检出率稳定在 r text_range(year_quarter_province_category_multi, "multi_detection_rate_percent")
之间,最大多残留检出数稳定在 r text_range(year_quarter_province_category_multi, "max_detection_num")
之间,多残留超标率稳定在 r text_range(year_quarter_province_category_multi, "multi_defective_rate_percent")
之间,最大多残留超标数稳定在 r text_range(year_quarter_province_category_multi, "max_defective_num")
之间。
`r if (FALSE) '
'`
year_quarter_province_product_multi <- spec_dataset( dims_comb_data, ana_dims, ana_threshold, "multi_residue", year, quarter, province, product ) |> factor_dims(year, quarter, province, product)
(ref:year-quarter-province-product-multi) 各年份各季度各省份各品种多残留指标
sp_dable(year_quarter_province_product_multi, ref_text = "(ref:year-quarter-province-product-multi)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.