PPTrank: Determine the best low rank using Projection based...

View source: R/PPTrank.R

PPTrankR Documentation

Determine the best low rank using Projection based Permutation Test (PPT)

Description

This function sequentially performs Projection based Permutation Test on singular values of cross-covariance matrix between data matrices X and Y, thus determine the best low rank.

Usage

PPTrank(
  X,
  Y,
  max,
  penalty = c("Fixed", "CV"),
  rho_x = NULL,
  rho_y = NULL,
  permutation_no,
  alpha = 0.05
)

Arguments

X

Data matrix, each row is one sample, each column is one feature.

Y

Data matrix, each row is one sample, each column is one feature.

max

The largest index that will be considered.

penalty

"Fixed" or "CV": how to choose the penalty parameter, using fixed value or through cross validation.

rho_x

Penalty parameter used for PMD estimation of data X. If penalty = "Fixed", rho should be a single value, if penalty = "CV", rho_x should be a vector containing candidate penalty parameters for cross validation.

rho_y

Penalty parameter used for PMD estimation of data Y. If penalty = "Fixed", rho should be a single value, if penalty = "CV", rho_y should be a vector containing candidate penalty parameters for cross validation.

permutation_no

Integer: number of permutations for each test.

alpha

Significance level, 0.05 by default

Value

A list containing best low rank and p-values

Examples

library(TestPMD)
data("covid")
PPTrank(X = covid$metabolite, Y = covid$protein, max = 2, penalty = "Fixed",
 rho_x = 0.9, rho_y = 0.9, permutation_no = 100, alpha = 0.1)

YunhuiQi/TestPMD documentation built on May 5, 2022, 8:23 p.m.