casl_lenet: Compute linear elastic net using coordinate descent.

Description Usage Arguments Value Author(s) References

View source: R/copy_casl.R

Description

Compute linear elastic net using coordinate descent.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
casl_lenet(
  X,
  y,
  lambda,
  alpha = 1,
  b = matrix(0, nrow = ncol(X), ncol = 1),
  tol = 1e-05,
  maxit = 50L,
  W = rep(1, length(y))/length(y)
)

Arguments

X

A numeric data matrix.

y

Response vector.

lambda

The penalty term.

alpha

Value from 0 and 1; balance between l1/l2 penalty.

b

Current value of the regression vector.

tol

Numeric tolerance parameter.

maxit

Integer maximum number of iterations.

W

Vector of sample weights.

Value

Regression vector beta of length ncol(X).

Author(s)

Taylor Arnold, Michael Kane, Bryan Lewis.

References

Taylor Arnold, Michael Kane, and Bryan Lewis. A Computational Approach to Statistical Learning. Chapman & Hall/CRC Texts in Statistical Science, 2019.


Zebedial/bis557 documentation built on Dec. 21, 2020, 2:16 a.m.