m_size <- matrix(NA, nrow = 2, ncol = 2)
m_sigma2_mse <- matrix(NA, nrow = 2, ncol = 1)
m_time <- matrix(NA, nrow = 2, ncol = 3)
load("code_1004_4.RData") # simulation/approx_1/
m_size[1, ] <- (code_1004[[1]][[1]] + code_1004[[2]][[1]]) / 2
m_sigma2_mse[1, ] <- (code_1004[[1]][[2]] + code_1004[[2]][[2]]) / 2
m_time[1, ] <- (code_1004[[1]][[3]] + code_1004[[2]][[3]]) / 2
load("code_1007_4.RData") # simulation/approx_1/
m_size[2, ] <- (code_1007[[1]][[1]] + code_1007[[2]][[1]]) / 2
m_sigma2_mse[2, ] <- (code_1007[[1]][[2]] + code_1007[[2]][[2]]) / 2
m_time[2, ] <- (code_1007[[1]][[3]] + code_1007[[2]][[3]]) / 2
print("summary for 100 code")
m_size
m_sigma2_mse
m_time
m_size <- matrix(0, nrow = 2, ncol = 2)
m_sigma2_mse <- matrix(0, nrow = 2, ncol = 1)
m_time <- matrix(0, nrow = 2, ncol = 3)
load("simulation/approx_1/code_5004_1_4.RData") # simulation/approx_1/
load("simulation/approx_1/code_5004_2_4.RData")
load("simulation/approx_1/code_5004_3_4.RData")
load("simulation/approx_1/code_5004_4_4.RData")
load("simulation/approx_1/code_5004_5_4.RData")
code_5004 <- c(code_5004_1, code_5004_2, code_5004_3, code_5004_4, code_5004_5)
for (i in seq_along(code_5004)) {
    m_size[1, ] <- m_size[1, ] + code_5004[[i]][[1]]
    m_sigma2_mse[1, ] <- m_sigma2_mse[1, ] + code_5004[[i]][[2]]
    m_time[1, ] <- m_time[1, ] + code_5004[[i]][[3]]
}

code_5004 <- list(
    m_size[1, ],
    m_sigma2_mse[1, ],
    m_time[1, ]
)
save(code_5004, file = "code_5004.RData")
load("simulation/approx_1/code_5007_1_4.RData") # simulation/approx_1/
load("simulation/approx_1/code_5007_2_4.RData")
load("simulation/approx_1/code_5007_3_4.RData")
load("simulation/approx_1/code_5007_4_4.RData")
load("simulation/approx_1/code_5007_5_4.RData")
code_5007 <- c(code_5007_1, code_5007_2, code_5007_3, code_5007_4, code_5007_5)
for (i in seq_along(code_5007)) {
    m_size[2, ] <- m_size[2, ] + code_5007[[i]][[1]]
    m_sigma2_mse[2, ] <- m_sigma2_mse[2, ] + code_5007[[i]][[2]]
    m_time[2, ] <- m_time[2, ] + code_5007[[i]][[3]]
}

code_5007 <- list(
    m_size[2, ],
    m_sigma2_mse[2, ],
    m_time[2, ]
)
save(code_5007, file = "code_5007.RData")
load("code_5004.RData")
m_size[1, ] <- code_5004[[1]] / 10
m_sigma2_mse[1, ] <- code_5004[[2]] / 10
m_time[1, ] <- code_5004[[3]] / 10
load("code_5007.RData")
m_size[2, ] <- code_5007[[1]] / 10
m_sigma2_mse[2, ] <- code_5007[[2]] / 10
m_time[2, ] <- code_5007[[3]] / 10
print("summary for 500")
m_size
m_sigma2_mse
m_time


ZhuolinSong/Goodness-of-fit-test-for-sparse-functional-data documentation built on April 4, 2022, 7:14 a.m.