m_mean <- matrix(0, nrow = 2, ncol = 2)
m_mse <- matrix(0, nrow = 2, ncol = 2)
m_sd <- matrix(0, nrow = 2, ncol = 2)
load("face_1004.RData") # simulation/approx_1/
face_1004 <- c(face_1004[[1]][[2]], face_1004[[2]][[2]])

load("face_1007.RData") # simulation/approx_1/
face_1007 <- c(face_1007[[1]][[2]], face_1007[[2]][[2]])

load("orig_1004.RData") # simulation/approx_1/
orig_1004 <- c(orig_1004[[1]][[2]], orig_1004[[2]][[2]])

load("orig_1007.RData") # simulation/approx_1/
orig_1007 <- c(orig_1007[[1]][[2]], orig_1007[[2]][[2]])
m_mean[1, 1] <- mean(orig_1004)
m_mse[1, 1] <- mean((orig_1004 - 1))
m_sd[1, 1] <- sd(orig_1004)

m_mean[1, 2] <- mean(face_1004)
m_mse[1, 2] <- mean((face_1004 - 1))
m_sd[1, 2] <- sd(face_1004)
hist(face_1004, col=rgb(1,0,0,0.5),xlim=c(-0.1,1.5), main='Overlapping Histogram', freq = F)
hist(orig_1004, col=rgb(0,0,1,0.5), add=T, freq = F)

plot(density(face_1004), xlim = c(-0.1,1.5), col=rgb(1,0,0,0.5), main='n = 100, m = 4')
lines(density(orig_1004), col=rgb(0,0,1,0.5))
m_mean[2, 1] <- mean(orig_1007)
m_mse[2, 1] <- mean((orig_1007 - 1))
m_sd[2, 1] <- sd(orig_1007)

m_mean[2, 2] <- mean(face_1007)
m_mse[2, 2] <- mean((face_1007 - 1))
m_sd[2, 2] <- sd(face_1007)
hist(face_1007, col=rgb(1,0,0,0.5),xlim=c(0.2,1.3), main='Overlapping Histogram', freq = F)
hist(orig_1007, col=rgb(0,0,1,0.5), add=T, freq = F)
plot(density(face_1007), xlim = c(0.2, 1.3), col=rgb(1,0,0,0.5), main='n = 100, m = 7')
lines(density(orig_1007), col=rgb(0,0,1,0.5))
print("summary for 100")
m_mean
m_mse
m_sd
m_mean <- matrix(0, nrow = 2, ncol = 2)
m_sd <- matrix(0, nrow = 2, ncol = 2)
m_mse <- matrix(0, nrow = 2, ncol = 2)
load("simulation/sigma_err/face_5004_1.RData") # simulation/approx_1/
load("simulation/sigma_err/face_5004_2.RData")
load("simulation/sigma_err/face_5004_3.RData")
load("simulation/sigma_err/face_5004_4.RData")
load("simulation/sigma_err/face_5004_5.RData")
face_5004.bs <- c(face_5004_1, face_5004_2, face_5004_3, face_5004_4, face_5004_5)
face_5004 <- c()
for (i in seq_along(face_5004.bs)) {
    face_5004 <- c(face_5004, face_5004.bs[[i]][[2]])
}

save(face_5004, file = "face_5004.RData")
load("simulation/sigma_err/face_5007_1.RData") # simulation/approx_1/
load("simulation/sigma_err/face_5007_2.RData")
load("simulation/sigma_err/face_5007_3.RData")
load("simulation/sigma_err/face_5007_4.RData")
load("simulation/sigma_err/face_5007_5.RData")
face_5007.bs <- c(face_5007_1, face_5007_2, face_5007_3, face_5007_4, face_5007_5)
face_5007 <- c()
for (i in seq_along(face_5007.bs)) {
    face_5007 <- c(face_5007, face_5007.bs[[i]][[2]])
}

save(face_5007, file = "face_5007.RData")
load("simulation/sigma_err/orig_5004_1.RData") # simulation/approx_1/
load("simulation/sigma_err/orig_5004_2.RData")
load("simulation/sigma_err/orig_5004_3.RData")
load("simulation/sigma_err/orig_5004_4.RData")
load("simulation/sigma_err/orig_5004_5.RData")
orig_5004.bs <- c(orig_5004_1, orig_5004_2, orig_5004_3, orig_5004_4, orig_5004_5)
orig_5004 <- c()
for (i in seq_along(orig_5004.bs)) {
    orig_5004 <- c(orig_5004, orig_5004.bs[[i]][[2]])
}

save(orig_5004, file = "orig_5004.RData")
load("simulation/sigma_err/orig_5007_1.RData") # simulation/approx_1/
load("simulation/sigma_err/orig_5007_2.RData")
load("simulation/sigma_err/orig_5007_3.RData")
load("simulation/sigma_err/orig_5007_4.RData")
load("simulation/sigma_err/orig_5007_5.RData")
orig_5007.bs <- c(orig_5007_1, orig_5007_2, orig_5007_3, orig_5007_4, orig_5007_5)
orig_5007 <- c()
for (i in seq_along(orig_5007.bs)) {
    orig_5007 <- c(orig_5007, orig_5007.bs[[i]][[2]])
}

save(orig_5007, file = "orig_5007.RData")
load("orig_5004.RData")
m_mean[1, 1] <- mean(orig_5004)
m_sd[1, 1] <- sd(orig_5004)
m_mse[1, 1] <- mean((orig_5004 - 1))
load("face_5004.RData")
m_mean[1, 2] <- mean(face_5004)
m_mse[1, 2] <- mean((face_5004 - 1))
m_sd[1, 2] <- sd(face_5004)
hist(face_5004, col=rgb(1,0,0,0.5),xlim=c(0.3,1.3), main='Overlapping Histogram', freq = F)
hist(orig_5004, col=rgb(0,0,1,0.5), add=T, freq = F)

plot(density(face_5004), xlim = c(0.3, 1.3), col=rgb(1,0,0,0.5), main='n = 500, m = 4')
lines(density(orig_5004), col=rgb(0,0,1,0.5))
load("orig_5007.RData")
m_mean[2, 1] <- mean(orig_5007)
m_sd[2, 1] <- sd(orig_5007)
m_mse[2, 1] <- mean((orig_5007 - 1))
load("face_5007.RData")
m_mean[2, 2] <- mean(face_5007)
m_mse[2, 2] <- mean((face_5007 - 1))
m_sd[2, 2] <- sd(face_5007)
hist(face_5007, col=rgb(1,0,0,0.5),xlim=c(0.6,1.2), main='Overlapping Histogram', freq = F)
hist(orig_5007, col=rgb(0,0,1,0.5), add=T, freq = F)
plot(density(face_5007), xlim = c(0.6, 1.2), col=rgb(1,0,0,0.5), main='n = 500, m = 7')
lines(density(orig_5007), col=rgb(0,0,1,0.5))
print("summary for 500")
m_mean
m_mse
m_sd
pdf(file = "err_histogram_1.pdf", height = 2, width = 8)

op <- par(mfrow = c(1, 4),
          oma = c(2, 2, 1, 1), # two rows of text at the outer left and bottom margin
          mar = c(0, 1, 0, 0),
          mgp = c(1, 1, 0),
          xpd = NA)
hist(face_1004, col=rgb(1,0,0,0.5),xlim=c(0,1.5), ylim=c(0,8), main=NA
, freq = F, xlab = '', ylab = '', axes = FALSE)
axis(side = 1)
axis(side = 2, las = 2)
hist(orig_1004, col=rgb(0,0,1,0.5), add=T, freq = F)
clip(0, 1.5, 0, 8)
abline(v = 1, lwd = 3)

hist(face_1007, col=rgb(1,0,0,0.5),xlim=c(0,1.5), ylim=c(0,8), main=NA
, freq = F, xlab = '', ylab = '', axes = FALSE)
axis(side = 1)
hist(orig_1007, col=rgb(0,0,1,0.5), add=T, freq = F)
clip(0, 1.5, 0, 8)
abline(v = 1, lwd = 3)

hist(face_5004, col=rgb(1,0,0,0.5),xlim=c(0,1.5), ylim=c(0,8), main=NA
, freq = F, xlab = '', ylab = '', axes = FALSE)
axis(side = 1)
hist(orig_5004, col=rgb(0,0,1,0.5), add=T, freq = F)
clip(0, 1.5, 0, 8)
abline(v = 1, lwd = 3)

hist(face_5007, col=rgb(1,0,0,0.5),xlim=c(0,1.5), ylim=c(0,8), main=NA
, freq = F, xlab = '', ylab = '', axes = FALSE)
axis(side = 1)
title(ylab = expression(paste(sigma == 1)),
      outer = T, line = 1)
hist(orig_5007, col=rgb(0,0,1,0.5), add=T, freq = F)
clip(0, 1.5, 0, 8)
abline(v = 1, lwd = 3)

par(op)

pdf(file = "err_density.pdf", height = 4, width = 16)
par(mfrow = c(1, 4))
plot(density(face_1004), xlim = c(-0.1,1.5), col=rgb(1,0,0,0.5), main='n = 100, m = 4')
lines(density(orig_1004), col=rgb(0,0,1,0.5))
abline(v = 1, lwd = 1.5)

plot(density(face_1007), xlim = c(0.2, 1.3), col=rgb(1,0,0,0.5), main='n = 100, m = 7')
lines(density(orig_1007), col=rgb(0,0,1,0.5))
abline(v = 1, lwd = 1.5)

plot(density(face_5004), xlim = c(0.3, 1.3), col=rgb(1,0,0,0.5), main='n = 500, m = 4')
lines(density(orig_5004), col=rgb(0,0,1,0.5))
abline(v = 1, lwd = 1.5)

plot(density(face_5007), xlim = c(0.6, 1.2), col=rgb(1,0,0,0.5), main='n = 500, m = 7')
lines(density(orig_5007), col=rgb(0,0,1,0.5))
abline(v = 1, lwd = 1.5)

dev.off()


ZhuolinSong/Goodness-of-fit-test-for-sparse-functional-data documentation built on April 4, 2022, 7:14 a.m.