Slice_Cycle | R Documentation |
Monte-Carlo procedure for multiple curves
Slice_Cycle(x, y, n_iter = 1000, n_burnin = n_iter/2)
x |
numeric (required) a variable |
y |
numeric (required) the measured value for x |
n_iter |
numeric (with default value) number of total iterations (including burn in; default: 1000) |
n_burnin |
numeric (with default) length of burn in, i.e. number of iterations to discard at the beginning. Default is n_iter/2, that is, discarding the first half of the simulations. |
a list with the following elements
Element | Type | Description |
$x1 | numeric | the new point |
$L | numeric | the new left boundary of the slice |
$R | numeric | the new right boundary of the slice |
$iter | numeric | the number of iteration |
#multiples TL calculated with RLumModel##########
#call function "model_LuminescenceSignals", model = "Bailey2001"
# the irradiation dose is varied and then compared.
require(RLumModel)
irradiation_dose <- seq(from = 0,to = 100,by = 20)
model.output <- lapply(irradiation_dose,
function(x){
sequence <- list(IRR = c(20, x, 1),
#PH = c(220, 10, 5),
TL=c(20,400,5))
data <- model_LuminescenceSignals(
sequence = sequence,
model = "Bailey2001",
plot = FALSE,
verbose = FALSE)
return(get_RLum(data, recordType = "TL$", drop = FALSE))
})
##combine output curves
TL_curve.merged <- merge_RLum(model.output)
##plot
plot_RLum(
object = TL_curve.merged,
xlab = "Temperature [°C]",
ylab = "TL signal [a.u.]",
main = "TL signal with various dose",
legend.text = paste("dose", irradiation_dose, "Gy"),
combine = TRUE)
##
n.pt<-length(TL_curve.merged[1]$data[,1])
n.irr<-length(irradiation_dose)
y<-x<-array(dim=c(n.pt,n.irr))
for (i in 1:n.irr){
x[,i]<-TL_curve.merged[i]$data[,1]
y[,i]<-TL_curve.merged[i]$data[,2]
}
if (dev.cur()!=1) dev.off()
Slice_mc(x,y,n_iter=1000,n_burnin=500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.