default_params: Default parameter space for mlr3automl

Description Usage Arguments Value

View source: R/default_params.R

Description

The parameter ranges are based on this Google doc.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
default_params(
  learner_list,
  feature_counts,
  using_hyperband = TRUE,
  using_prefixes = TRUE,
  preprocessing = "stability",
  feature_types = NULL,
  additional_params = NULL,
  custom_trafo = NULL
)

Arguments

learner_list

(list() | character())
List of names from mlr_learners. Can be used to customize the learners to be tuned over.
Default learners for classification: c("classif.ranger", "classif.xgboost", "classif.liblinear")
Default learners for regression: c("regr.ranger", "regr.xgboost", "regr.svm", "regr.liblinear", "regr.cv_glmnet")
Might break mlr3automl if a user-provided learner is incompatible with the provided task.

feature_counts

(integer()) 3x2 integer matrix with rownames c("no_encoding", "one_hot_encoding", "impact_encoding") and colnames c("numeric_cols", "all_cols"). The number of features is needed for tuning of mtry in Random Forest and setting the max. number of components in PCA.

using_hyperband

(logical(1)) For Tuning with Hyperband, a subsampling budget parameter is added to the pipeline.

using_prefixes

(logical(1)) If TRUE, parameter IDs are prefixed with the learner$id. Used to avoid name conflicts in branched pipelines.

preprocessing

(character(1) | Graph) Type of preprocessing used.

feature_types

(character()) Types of features in the dataset. Used to determine appropriate imputation methods.

additional_params

(ParamSet) Additional parameter space to tune over, e.g. for custom learners / preprocessing.

custom_trafo

(function(x, param_set)) Trafo function to be applied in addition to existing transformations. Can be used to transform additional_params.

Value

ParamSet


a-hanf/mlr3automl documentation built on Feb. 21, 2022, 1:06 a.m.