plotClimateTrendChart: plotClimateTrendChart

Description Usage Arguments Details Value References Examples

View source: R/plotClimateTrendChart.R

Description

plotClimateTrendChart Generate a trendline chart across multiple growing seasons using aWhere weather data with standardized formatting of a prefedined set of climate indices

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
plotClimateTrendChart(
  data,
  variable,
  season.monthDay_start = "01-01",
  season.monthDay_end = "12-31",
  years.LTN = seq(2006, 2020, 1),
  title = NULL,
  e_precip = FALSE,
  e_threshold = 35,
  yAxisLimits = NA,
  size_font_main_title = 16,
  size_font_axis_titles = 14,
  size_font_axis_labels = 12,
  size_font_legend_entries = 12,
  line_width = 1,
  annotationsWhichSide = "left",
  indexSpecificValue = NULL,
  offline_mode = FALSE
)

Arguments

data

data frame in which variables are named according to the schema output by generateaWhereDataset.R (required)

variable

character string denoting the variable to chart. Acceptable values are maxLenDrySpell, maxLenWetSpell, numFrostDays, numSummerDays, numIcingDays, numTropicalNights, minOfMaxTemp, maxOfMaxTemp, minOfMinTemp, maxOfMinTemp, dailyTempRange, maxSingleDayPrecip, max5ConsDayPrecip, simplePrecipIntensityIndex, precipSumExceedPercentile, warmSpellDurIndex, coldSpellDurIndex, countDaysPrecipExceedAmount, percentDaysMinTempBelowQuantile, percentDaysMaxTempBelowQuantile, percentDaysMinTempAboveQuantile, percentDaysMaxTempAboveQuantile, maxOfAccumulatedPet, sumOfGDD, sumOfPET, sumOfPrecip, sumOfSolar, averageMaxTemp, averageMinTemp, averageMaxRH, averageMinRH,averageWind, and maxWindGust

season.monthDay_start

Specify the start month-day combination of the "season" you want analyzed (optional)

season.monthDay_end

Specify the end month-day combination of the "season" you want analyzed (optional)

years.LTN

specify the years over which you want the LTN calculated. Defaults to 2006-2020 (optional)

title

character string of title to assign to the plot. (optional)

e_precip

logical, if set to TRUE, effective precipitation will be calculated and charted based on e_threshold. Default is set to FALSE. (optional)

e_threshold

numeric value (in milimeters) for the daily maximum used to calculate effective precipitation if e_precip is set to TRUE. (optional)

yAxisLimits

Used to set the limits of the y axis explicitly. If used, must be a two element vector of the form c(minValue, maxValue) (optional)

size_font_main_title

Font size of main title of graph (optional)

size_font_axis_titles

Font size of axes on graph (optional)

size_font_axis_labels

Font size of labels on axes on graph (optional)

size_font_legend_entries

Font size of entries in lengend on graph (optional)

line_width

Font size for line geometries on charts (optional)

annotationsWhichSide

Whether to plot annotations on left or right side of figure (optional)

indexSpecificValue

For the Climate Indices this tool can plot the user can override the default value of the index using this parameter (optional)

offline_mode

Set to TRUE to work in offline mode and not attempt to fetch data from the aWhere API (optional)

doRoll

apply a rolling average to the calculation.

rolling_window

numeric value for the number of days to use in rolling average calculations. Default value is 30. (optional)

Details

This function extends the aWhere charts package to plot the ETCCDI climate change indices (reference below). Most indices are implement3e with the default behavior described int he publication. Default values of the indices can be overriden using the "indexSpecificValue" parameter. Applies a summary statistic over each year/season of data and then fits trend line to that data across all LTN years

Also has helper functions including to automatically (with user permission) download missing but needed data and store in the aWhereEnv to persist it throughout a user R session.

Value

plot object

References

http://etccdi.pacificclimate.org/list_27_indices.shtml

Examples

1
2
3
4
5
6
7
8
9
## Not run: plotClimateTrendChart(data = weather_df
                               ,variable = "seasonTotalPrecip"
                               ,season.monthDay_start = '09-01'
                               ,season.monthDay_end = '11-30'
                               ,years.LTN = seq(2010,2019,1)
                               ,e_precip = TRUE
                               ,e_threshold = 10
                               ,doRoll = TRUE)
## End(Not run)

aWhereAPI/aWhere-R-Charts documentation built on Dec. 30, 2021, 12:58 p.m.