empLPP: Empirical Locality Preserving Projection

Description Usage Arguments Value References

View source: R/PCAandFA.R

Description

This function implements a variant of the locality preserving projection method. Ordinary locality preserving projections require user-defined parameters to construct a graph for characterizing the local structure of the data. Here an empirical (data dependent) approach is used to construct the graph. The only tuning parameter that requires input by the user is the kernel precision parameter tau.

Usage

1
empLPP(x, ncomp = min(nrow(x) - 1, ncol(x)), h = 1, scale = T)

Arguments

x

a data frame or matrix of numeric covariates

ncomp

number of desired components

h

kernel smoothing parameter. defaults to 1.

scale

should the variables be scaled prior to analysis? Defaults to TRUE.

Value

a 'PrincipalComp' object.

References

Yang, B. and Chen, S. (2010). Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing, 74(1-3), pp. 301–314.


abnormally-distributed/cvreg documentation built on May 3, 2020, 3:45 p.m.